Problem Set 4

Due: March 6

Reading:

- Section 5.4, State Machines: Invariants
- Chapter 6, Recursive Data Types
- Chapter 7, Infinite Sets, The Halting Problem.

Problem 1.
A robot moves on the two-dimensional integer grid. It starts out at (0, 0) and is allowed to move in any of these four ways:

1. (+2, −1): right 2, down 1
2. (−2, +1): left 2, up 1
3. (+1, +3)
4. (−1, −3)

Prove that this robot can never reach (1, 1).

Problem 2.
Let \(L \) be some convenient set whose elements will be called labels. The labeled binary trees, LBT’s, are defined recursively as follows:

Definition. Base case: if \(l \) is a label, then \((l, \text{leaf})\) is an LBT, and

Constructor case: if \(B \) and \(C \) are LBT’s, then \((l, B, C)\) is an LBT.

The leaf-labels and internal-labels of an LBT are defined recursively in the obvious way:

Definition. Base case: The set of leaf-labels of the LBT \((l, \text{leaf})\) is \(\{l\}\), and its set of internal-labels is the empty set.

Constructor case: The set of leaf labels of the LBT \((l, B, C)\) is the union of the leaf-labels of \(B \) and of \(C \); the set of internal-labels is the union of \(\{l\}\) and the sets of internal-labels of \(B \) and of \(C \).

The set of labels of an LBT is the union of its leaf- and internal-labels.

The LBT’s with unique labels are also defined recursively.
Definition. Base case: The LBT \(\{l, \text{leaf} \} \) has unique labels.

Constructor case: If \(B \) and \(C \) are LBT’s with unique labels, no label of \(B \) is a label \(C \) and vice-versa, and \(l \) is not a label of \(B \) or \(C \), then \(\{l, B, C\} \) has unique labels.

If \(B \) is an LBT, let \(n_B \) be the number of distinct internal-labels appearing in \(B \) and \(f_B \) be the number of distinct leaf labels of \(B \). Prove by structural induction that

\[
f_B = n_B + 1
\]

for all LBT’s \(B \) with unique labels. This equation can obviously fail if labels are not unique, so your proof had better use uniqueness of labels at some point; be sure to indicate where.

Problem 3.

In this problem you will prove a fact that may surprise you—or make you even more convinced that set theory is nonsense: the half-open unit interval is actually the “same size” as the nonnegative quadrant of the real plane!¹ Namely, there is a bijection from \((0, 1)\) to \([0, \infty) \times [0, \infty)\).

(a) Describe a bijection from \((0, 1)\) to \([0, \infty)\).

Hint: \(1/x \) almost works.

(b) An infinite sequence of the decimal digits \(\{0, 1, \ldots, 9\} \) will be called long if it does not end with all 0’s. An equivalent way to say this is that a long sequence is one that has infinitely many occurrences of nonzero digits. Let \(L \) be the set of all such long sequences. Describe a bijection from \(L \) to the half-open real interval \((0, 1]\).

Hint: Put a decimal point at the beginning of the sequence.

(c) Describe a surjective function from \(L \) to \(L^2 \) that involves alternating digits from two long sequences.

Hint: The surjection need not be total.

(d) Prove the following lemma and use it to conclude that there is a bijection from \(L^2 \) to \((0, 1]^2\).

Lemma 3.1. Let \(A \) and \(B \) be nonempty sets. If there is a bijection from \(A \) to \(B \), then there is also a bijection from \(A \times A \) to \(B \times B \).

(e) Conclude from the previous parts that there is a surjection from \((0, 1] \) to \((0, 1]^2\). Then appeal to the Schröder-Bernstein Theorem to show that there is actually a bijection from \((0, 1] \) to \((0, 1]^2\).

(f) Complete the proof that there is a bijection from \((0, 1] \) to \([0, \infty)^2\).

¹The half-open unit interval, \((0, 1]\), is \(\{r \in \mathbb{R} \mid 0 < r \leq 1\} \). Similarly, \([0, \infty) := \{r \in \mathbb{R} \mid r \geq 0\} \).