Problem Set 4

Due: March 6

Reading:

- Section 5.4. State Machines: Invariants
- Chapter 6. Recursive Data Types
- Chapter 7. Infinite Sets, The Halting Problem.

Problem 1.

A robot moves on the two-dimensional integer grid. It starts out at (0, 0) and is allowed to move in any of these four ways:

- 1. (+2, -1): right 2, down 1
- 2. (-2, +1): left 2, up 1
- 3. (+1, +3)
- 4. (-1, -3)

Prove that this robot can never reach (1, 1).

Problem 2.

Let L be some convenient set whose elements will be called *labels*. The labeled binary trees, LBT's, are defined recursively as follows:

Definition. Base case: if *l* is a label, then $\langle l, \text{leaf} \rangle$ is an LBT, and

Constructor case: if *B* and *C* are LBT's, then (l, B, C) is an LBT.

The *leaf-labels* and *internal-labels* of an LBT are defined recursively in the obvious way:

Definition. Base case: The set of leaf-labels of the LBT $\langle l, leaf \rangle$ is $\{l\}$, and its set of internal-labels is the empty set.

Constructor case: The set of leaf labels of the LBT (l, B, C) is the union of the leaf-labels of *B* and of *C*; the set of internal-labels is the union of $\{l\}$ and the sets of internal-labels of *B* and of *C*.

The set of *labels* of an LBT is the union of its leaf- and internal-labels. The LBT's with *unique* labels are also defined recursively:

^{2015,} Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

Definition. Base case: The LBT $\langle l, \text{leaf} \rangle$ has unique labels.

Constructor case: If *B* and *C* are LBT's with unique labels, no label of *B* is a label *C* and vice-versa, and *l* is not a label of *B* or *C*, then $\langle l, B, C \rangle$ has *unique labels*.

If B is an LBT, let n_B be the number of distinct internal-labels appearing in B and f_B be the number of distinct leaf labels of B. Prove by structural induction that

$$f_B = n_B + 1 \tag{1}$$

for all LBT's B with unique labels. This equation can obviously fail if labels are not unique, so your proof had better use uniqueness of labels at some point; be sure to indicate where.

Problem 3.

In this problem you will prove a fact that may surprise you—or make you even more convinced that set theory is nonsense: the half-open unit interval is actually the "same size" as the nonnegative quadrant of the real plane!¹ Namely, there is a bijection from (0, 1] to $[0, \infty) \times [0, \infty)$.

(a) Describe a bijection from (0, 1] to $[0, \infty)$.

Hint: 1/x almost works.

(b) An infinite sequence of the decimal digits $\{0, 1, ..., 9\}$ will be called *long* if it does not end with all 0's. An equivalent way to say this is that a long sequence is one that has infinitely many occurrences of nonzero digits. Let *L* be the set of all such long sequences. Describe a bijection from *L* to the half-open real interval (0, 1].

Hint: Put a decimal point at the beginning of the sequence.

(c) Describe a surjective function from L to L^2 that involves alternating digits from two long sequences. *Hint:* The surjection need not be total.

(d) Prove the following lemma and use it to conclude that there is a bijection from L^2 to $(0, 1]^2$. Lemma 3.1. Let A and B be nonempty sets. If there is a bijection from A to B, then there is also a bijection from $A \times A$ to $B \times B$.

(e) Conclude from the previous parts that there is a surjection from (0, 1] to $(0, 1]^2$. Then appeal to the Schröder-Bernstein Theorem to show that there is actually a bijection from (0, 1] to $(0, 1]^2$.

(f) Complete the proof that there is a bijection from (0, 1] to $[0, \infty)^2$.

¹The half-open unit interval, (0, 1], is $\{r \in \mathbb{R} \mid 0 < r \le 1\}$. Similarly, $[0, \infty) ::= \{r \in \mathbb{R} \mid r \ge 0\}$.