
“ps1” — 2015/2/17 — 1:05 — page 1 — #1

Massachusetts Institute of Technology
6.042J/18.062J, Spring ’15: Mathematics for Computer Science February 4
Prof. Albert R Meyer & Prof. Adam Chlipala revised Tuesday 17th February, 2015, 01:05

Problem Set 1
Due: February 17

Reading:

� Chapter 1. What is a Proof?,

� Chapter 2. The Well Ordering Principle through 2.3. Factoring into Primes (omit 2.4. Well Ordered
Sets),

� Chapter 3. Logical Formulas through 3.3. Equivalence and Validity, and 3.5. The SAT Problem
(optional: 3.4. Algebra of Propositions).

These assigned readings do not include the Problem sections. (Many of the problems in the text will appear
as class or homework problems.)

Reminder:

� Problems should be submitted electronically, and each problem should begin with a Collaboration &
Effort Statement.

� The class has a Piazza forum. With Piazza you may post questions—both administrative and content
related—to the entire class or to just the staff. You are likely to get faster response through Piazza
than from direct email to staff.

Problem 1.
Prove that log4 6 is irrational.

Problem 2.
Use the Well Ordering Principle to prove that

n � 3n=3 (1)

for every nonnegative integer, n.
Hint: Verify (1) for n � 4 by explicit calculation.

Problem 3. (a) Verify by truth table that

.P IMPLIES Q/ OR .Q IMPLIES P /

is valid.

2015, Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons
Attribution-ShareAlike 3.0 license.

http://web.mit.edu/
https://stellar.mit.edu/S/course/6/sp15/6.042
http://people.csail.mit.edu/meyer
http://people.csail.mit.edu/chlipala
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#chapter.1
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#chapter.2
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#section.2.3
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#section.2.4
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#chapter.3
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#section.3.3
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#section.3.5
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#section.3.4
https://stellar.mit.edu/S/course/6/sp15/6.042/homework/index.html
https://stellar.mit.edu/S/course/6/sp15/6.042/courseMaterial/topics/topic4/syllabus/text3/text
https://stellar.mit.edu/S/course/6/sp15/6.042/courseMaterial/topics/topic4/syllabus/text3/text
http://piazza.com/mit/spring2015/6042j18062j/home
http://creativecommons.org/licenses/by-sa/3.0/
http://people.csail.mit.edu/meyer
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/


“ps1” — 2015/2/17 — 1:05 — page 2 — #2

2 Problem Set 1

(b) Let P and Q be propositional formulas. Describe a single formula, R, using only AND’s, OR’s, NOT’s,
and copies of P and Q, such that R is valid iff P and Q are equivalent.

(c) A propositional formula is satisfiable iff there is an assignment of truth values to its variables—an
environment—which makes it true. Explain why

P is valid iff NOT.P / is not satisfiable.

(d) A set of propositional formulas P1; : : : ; Pk is consistent iff there is an environment in which they are
all true. Write a formula, S , so that the set P1; : : : ; Pk is not consistent iff S is valid.

Problem 4.
There are adder circuits that are much faster, and only slightly larger, than the ripple-carry circuits of Prob-
lem 3.5 of the course text. They work by computing the values in later columns for both a carry of 0 and
a carry of 1, in parallel. Then, when the carry from the earlier columns finally arrives, the pre-computed
answer can be quickly selected. We’ll illustrate this idea by working out the equations for an .n C 1/-bit
parallel half-adder.

Parallel half-adders are built out of parallel add1 modules. An .n C 1/-bit add1 module takes as in-
put the .n C 1/-bit binary representation, an : : : a1a0, of an integer, s, and produces as output the binary
representation, c pn : : : p1p0, of s C 1.

(a) A 1-bit add1 module just has input a0. Write propositional formulas for its outputs c and p0.

(b) Explain how to build an .nC 1/-bit parallel half-adder from an .nC 1/-bit add1 module by writing a
propositional formula for the half-adder output, oi , using only the variables ai , pi , and b.

We can build a double-size add1 module with 2.nC 1/ inputs using two single-size add1 modules with
n C 1 inputs. Suppose the inputs of the double-size module are a2nC1; : : : ; a1; a0 and the outputs are
c; p2nC1; : : : ; p1; p0. The setup is illustrated in Figure 1.

Namely, the first single size add1 module handles the first nC 1 inputs. The inputs to this module are the
low-order nC 1 input bits an; : : : ; a1; a0, and its outputs will serve as the first nC 1 outputs pn; : : : ; p1; p0

of the double-size module. Let c.1/ be the remaining carry output from this module.
The inputs to the second single-size module are the higher-order nC1 input bits a2nC1; : : : ; anC2; anC1.

Call its first nC 1 outputs rn; : : : ; r1; r0 and let c.2/ be its carry.

(c) Write a formula for the carry, c, in terms of c.1/ and c.2/.

(d) Complete the specification of the double-size module by writing propositional formulas for the remain-
ing outputs, pi , for nC 1 � i � 2nC 1. The formula for pi should only involve the variables ai , ri�.nC1/,
and c.1/.

(e) Parallel half-adders are exponentially faster than ripple-carry half-adders. Confirm this by determining
the largest number of propositional operations required to compute any one output bit of an n-bit add module.
(You may assume n is a power of 2.)

https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#problem.3.5


“ps1” — 2015/2/17 — 1:05 — page 3 — #3

Problem Set 1 3

.nC1/-bit add1

2.nC2/-bit add1 module

.nC1/-bit add1

a2nC1 anC2 anC1

rn r1 r0

an a1 a0

pn p1 p0p2nC1 pnC2 pnC1

c

c.1/c.2/

Figure 1 Structure of a Double-size add1 Module.


	Problem 1
	Problem 2
	Problem 3
	Problem 4

