Predicate Logic, I
Quantifiers \forall, \exists

Predicates
$P(x,y) ::= [x + 2 = y]$

- $x = 1$ and $y = 3$: $P(1,3)$ is true
- $x = 1$ and $y = 4$: $P(1,4)$ is false

$\forall s. P(s)$
same as
$P(Drew) \land P(Peter) \land P(Keshav) \land \ldots \land P(Michaela)$

Quantifiers

$\forall x$ For ALL x
$\exists y$ There EXISTS some y

\exists is like OR
Let t range over 6.042 staff
$B(t) ::= [t \text{ took 6.042 Before}]$

$\exists t. B(t)$
same as
$B(Drew) \lor B(Peter) \lor B(Keshav) \lor \ldots \lor B(Michaela)$
Existential Quantifier
Let \(x, y \) range over \(\mathbb{N} \)
\[Q(y) ::= \exists x. x < y \]
\(Q(3) \) is \(\top \) (\([x<3]\) is \(\top \) for \(x=1 \))
\(Q(1) \) is \(\top \) (\([x<1]\) is \(\top \) for \(x=0 \))
\(Q(0) \) is \(\bot \) (\([x<0]\) is not \(\top \) for any \(x \) in \(\mathbb{N} \))

Universal Quantifier
\(x, y \) range over \(\mathbb{N} \)
\[R(y) ::= \forall x. x < y \]
\(R(1) \) is \(\bot \) (\([x<1]\) is \(\bot \) for \(x=5 \))
\(R(8) \) is \(\bot \) (\([x<8]\) is \(\bot \) for \(x=12 \))
\(R(10^{100}) \) is \(\bot \) (\([x<10^{100}]\) is \(\bot \) for \(x=10^{100} \))

For every virus, I have a defense:
- against MYDOOM, use Defender
- against ILOVEYOU, use Norton
- against BABLAS, use Zonealarm...

\(\forall \exists \) is expensive!

Example: \(d \) is MITviruscan, protects against all viruses

That's what we want!

Alternating Quantifiers
\[G ::= \forall x \exists y. x < y \]
\(x, y \) range over Domain of Discourse
\(\text{Domain} \) \[\begin{array}{ll}
\mathbb{N} & \top \\
\text{ints} < 0 & \bot \\
\text{reals} < 0 & \bot
\end{array} \]
\(G \) is:
\[\begin{array}{ll}
\mathbb{N} & \top \\
\mathbb{Z}^- & \bot \\
\mathbb{R}^- & \bot
\end{array} \]

Reverse the Quantifiers
\[H ::= \exists y \forall x. x \leq y \]
\(\text{Domain} \) \[\begin{array}{ll}
\mathbb{N} & \bot \\
\mathbb{Z}^- & \top \\
\mathbb{R}^- & \bot
\end{array} \]
\(H \) is:
\[\begin{array}{ll}
\mathbb{N} & \bot \\
\mathbb{Z}^- & \bot \\
\mathbb{R}^- & \bot
\end{array} \]