Noncomputable Sets

Computable strings in \(\{0,1\}^\omega \)

An infinite string \(s \) in \(\{0,1\}^\omega \) is computable iff some procedure computes its digits.

(Procedure applied to argument \(n \) returns \(n \)th digit of \(s \).)

\{ASCII\}* is countable

Only countably many finite ASCII strings. (List them in order of length.)

Procedures can be expressed in ASCII, so only countably many procedures.

Noncomputable strings in \(\{0,1\}^\omega \)

So only countably many computable infinite binary strings.

But \(\{0,1\}^\omega \) is uncountable, so there must be noncomputable strings in \(\{0,1\}^\omega \) —in fact, uncountably many!
The Halting Problem

There is no test procedure for halting of arbitrary procedures. The Halting Problem is not decidable by computational procedures.

String procedure P takes a String argument:

- $P("no")$ returns 2
- $P("albert")$ returns "meyer"
- $P("&%99!!")$ causes an error
- $P("what now?")$ runs forever.

Let s be an ASCII string defining P_s. Say s HALTS iff $P_s(s)$ returns something.

Suppose there was a procedure Q that decided HALTS:

- $Q(s)$ returns "yes" if s HALTS
- returns "no" otherwise.
The Halting Problem

Modify Q to Q':
- Q'(s) returns "yes" if Q(s) returns "no"
- Q'(s) returns nothing if Q(s) returns "yes"

So
- s HALTS iff Q'(s) returns nothing

Let t be the text for Q:
- t HALTS iff Q'(t) returns
- and by def of Q:
- Q'(t) returns iff NOT(t HALTS)

CONTRADICTION:
- t HALTS iff NOT(t HALTS)
- There can't be such a Q:
 it is impossible to write a procedure that decides whether strings HALT
There is no string procedure that type-checks perfectly, because:
Suppose C was a type-checking procedure: for program text s
$C(s)$ returns “yes” if s would cause a run-time type error
returns “no” otherwise.

Use C to get a HALTS Tester H: to compute $H(s)$, construct a
new program text, s', that acts like a slightly modified
interpreter for s. Namely:

• s' skips any command that would cause s to make a run-time type error.
• s' purposely makes a type-error when it finds that s HALTS.

Then compute $C(s')$ and return the same value.
So s HALTS iff s' makes run-time type error
iff $C(s') = “yes”$
iff $H(s) = “yes”$
The Type-checking Problem

H solves the Halting Problem, a contradiction. So C must not error check correctly.

No run-time properties are decidable

The same reasoning shows that there is no perfect checker for essentially any property of procedure outcomes.