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Massachusetts Institute of Technology
6.042J/18.062J, Spring ’15: Mathematics for Computer Science March 16
Prof. Albert R Meyer & Prof. Adam Chlipala revised Saturday 14th March, 2015, 01:40

In-Class Problems Week 7, Mon.

Problem 1. (a) Give an example of a digraph in which a vertex v is on a positive even-length closed walk,
but no vertex is on an even-length cycle.

(b) Give an example of a digraph in which a vertex v is on an odd-length closed walk but not on an odd-
length cycle.

(c) Prove that every odd-length closed walk contains a vertex that is on an odd-length cycle.

Problem 2.
Lemma 9.2.5 states that dist .u; v/ � dist .u; x/C dist .x; v/. It also states that equality holds iff x is on a
shortest path from u to v.
(a) Prove the “iff” statement from left to right.

(b) Prove the “iff” from right to left.

Problem 3.
A 3-bit string is a string made up of 3 characters, each a 0 or a 1. Suppose you’d like to write out, in one
string, all eight of the 3-bit strings in any convenient order. For example, if you wrote out the 3-bit strings in
the usual order starting with 000 001 010. . . , you could concatenate them together to get a length 3 � 8 D 24

string that started 000001010. . . .
But you can get a shorter string containing all eight 3-bit strings by starting with 00010. . . . Now 000 is

present as bits 1 through 3, and 001 is present as bits 2 through 4, and 010 is present as bits 3 through 5, . . . .
(a) Say a string is 3-good if it contains every 3-bit string as 3 consecutive bits somewhere in it. Find a

3-good string of length 10, and explain why this is the minimum length for any string that is 3-good.

(b) Explain how any walk that includes every edge in the graph shown in Figure 1 determines a string that
is 3-good. Find the walk in this graph that determines your 3-good string from part (a).

(c) Explain why a walk in the graph of Figure 1 that includes every every edge exactly once provides a
minimum-length 3-good string.1

(d) Generalize the 2-bit graph to a k-bit digraph, Bk , for k � 2, where V.Bk/ WWD f0; 1gk , and any walk
through Bk that contains every edge exactly once determines a minimum length .k C 1/-good bit-string.2

What is this minimum length?

Define the transitions of Bk . Verify that the in-degree and out-degree of every vertex is even, and that there
is a positive path from any vertex to any other vertex (including itself) of length at most k.

2015, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0
license.

1The 3-good strings explained here generalize to n-good strings for n � 3. They were studied by the great Dutch mathemati-
cian/logician Nicolaas de Bruijn, and are known as de Bruijn sequences. de Bruijn died in February, 2012 at the age of 94.

2Problem 9.23 explains why such “Eulerian” paths exist.
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Figure 1 The 2-bit graph.

Suppemental Problem:

Problem 4.
In a round-robin tournament, every two distinct players play against each other just once. For a round-robin
tournament with no tied games, a record of who beat whom can be described with a tournament digraph,
where the vertices correspond to players and there is an edge hx!yi iff x beat y in their game.

A ranking is a path that includes all the players. So in a ranking, each player won the game against the
next ranked player, but may very well have lost their games against players ranked later—whoever does the
ranking may have a lot of room to play favorites.

(a) Give an example of a tournament digraph with more than one ranking.

(b) Prove that every finite tournament digraph has a ranking.
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