In-Class Problems Week 7, Mon.

Problem 1. (a) Give an example of a digraph in which a vertex v is on a positive even-length closed walk, but *no* vertex is on an even-length cycle.

(b) Give an example of a digraph in which a vertex v is on an odd-length closed walk but not on an odd-length cycle.

(c) Prove that every odd-length closed walk contains a vertex that is on an odd-length cycle.

Problem 2.

Lemma 9.2.5 states that dist $(u, v) \leq \text{dist}(u, x) + \text{dist}(x, v)$. It also states that equality holds iff x is on a shortest path from u to v.

(a) Prove the "iff" statement from left to right.

(**b**) Prove the "iff" from right to left.

Problem 3.

A 3-bit string is a string made up of 3 characters, each a 0 or a 1. Suppose you'd like to write out, in one string, all eight of the 3-bit strings in any convenient order. For example, if you wrote out the 3-bit strings in the usual order starting with 000 001 010..., you could concatenate them together to get a length $3 \cdot 8 = 24$ string that started 000001010....

But you can get a shorter string containing all eight 3-bit strings by starting with 00010.... Now 000 is present as bits 1 through 3, and 001 is present as bits 2 through 4, and 010 is present as bits 3 through 5,

(a) Say a string is *3-good* if it contains every 3-bit string as 3 consecutive bits somewhere in it. Find a 3-good string of length 10, and explain why this is the minimum length for any string that is 3-good.

(b) Explain how any walk that includes every edge in the graph shown in Figure 1 determines a string that is 3-good. Find the walk in this graph that determines your 3-good string from part (a).

(c) Explain why a walk in the graph of Figure 1 that includes every every edge *exactly once* provides a minimum-length 3-good string.¹

(d) Generalize the 2-bit graph to a k-bit digraph, B_k , for $k \ge 2$, where $V(B_k) ::= \{0, 1\}^k$, and any walk through B_k that contains every edge exactly once determines a minimum length (k + 1)-good bit-string.²

What is this minimum length?

Define the transitions of B_k . Verify that the in-degree and out-degree of every vertex is even, and that there is a positive path from any vertex to any other vertex (including itself) of length at most k.

^{2015,} Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

¹The 3-good strings explained here generalize to *n*-good strings for $n \ge 3$. They were studied by the great Dutch mathematician/logician Nicolaas de Bruijn, and are known as *de Bruijn sequences*. de Bruijn died in February, 2012 at the age of 94.

²Problem 9.23 explains why such "Eulerian" paths exist.

Figure 1 The 2-bit graph.

Suppemental Problem:

Problem 4.

In a round-robin tournament, every two distinct players play against each other just once. For a round-robin tournament with no tied games, a record of who beat whom can be described with a *tournament digraph*, where the vertices correspond to players and there is an edge $\langle x \rightarrow y \rangle$ iff x beat y in their game.

A *ranking* is a path that includes all the players. So in a ranking, each player won the game against the next ranked player, but may very well have lost their games against players ranked later—whoever does the ranking may have a lot of room to play favorites.

(a) Give an example of a tournament digraph with more than one ranking.

(b) Prove that every finite tournament digraph has a ranking.