
“cp5w” — 2015/2/25 — 18:03 — page 1 — #1

Massachusetts Institute of Technology
6.042J/18.062J, Spring ’15: Mathematics for Computer Science March 4
Prof. Albert R Meyer & Prof. Adam Chlipala revised Wednesday 25th February, 2015, 18:03

In-Class Problems Week 5, Wed.

Problem 1. (a) Several students felt the proof of Lemma 7.1.7 was worrisome, if not circular. What do you
think?

Lemma 7.1.7. Let A be a set and b … A. If A is infinite, then there is a bijection from A [fbg to A.

Proof. Here’s how to define the bijection: since A is infinite, it certainly has at least one element; call it
a0. But since A is infinite, it has at least two elements, and one of them must not be equal to a0; call
this new element a1. But since A is infinite, it has at least three elements, one of which must not equal
a0 or a1; call this new element a2. Continuing in the way, we conclude that there is an infinite sequence
a0; a1; a2; : : : ; an; : : : of different elements of A. Now we can define a bijection f W A [fbg ! A:

f .b/ WWD a0;

f .an/ WWD anC1 for n 2 N;

f .a/ WWD a for a 2 A � fa0; a1; : : :g:

�

(b) Use the proof of Lemma 7.1.7 to show that if A is an infinite set, then A surj N, that is, every infinite
set is “as big as” the set of nonnegative integers.

Problem 2.
Prove that if there is a surjective function (Œ� 1 out;� 1 in� mapping) f W N! S , then S is countable.

Hint: A Computer Science proof involves filtering for duplicates.

Problem 3.
The rational numbers fill the space between integers, so a first thought is that there must be more of them
than the integers, but it’s not true. In this problem you’ll show that there are the same number of positive
rationals as positive integers. That is, the positive rationals are countable.

(a) Define a bijection between the set, ZC, of positive integers, and the set, .ZC � ZC/, of all pairs of
positive integers:

.1; 1/; .1; 2/; .1; 3/; .1; 4/; .1; 5/; : : :

.2; 1/; .2; 2/; .2; 3/; .2; 4/; .2; 5/; : : :

.3; 1/; .3; 2/; .3; 3/; .3; 4/; .3; 5/; : : :

.4; 1/; .4; 2/; .4; 3/; .4; 4/; .4; 5/; : : :

.5; 1/; .5; 2/; .5; 3/; .5; 4/; .5; 5/; : : :
:::

2015, Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons
Attribution-ShareAlike 3.0 license.

http://web.mit.edu/
https://stellar.mit.edu/S/course/6/sp15/6.042
http://people.csail.mit.edu/meyer
http://people.csail.mit.edu/adamc
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#theorem.7.1.7
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#theorem.7.1.7
https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#theorem.7.1.7
http://creativecommons.org/licenses/by-sa/3.0/
http://people.csail.mit.edu/meyer
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

“cp5w” — 2015/2/25 — 18:03 — page 2 — #2

2 In-Class Problems Week 5, Wed.

(b) Conclude that the set, QC, of all positive rational numbers is countable.

Hint: Use Problem 2.

Problem 4.
Let’s refer to a programming procedure (written in your favorite programming language —C++, or Java, or
Python, . . .) as a string procedure when it is applicable to data of type string and only returns values of type
boolean. When a string procedure, P , applied to a string, s, returns True, we’ll say that P recognizes s. If
R is the set of strings that P recognizes, we’ll call P a recognizer for R.

(a) Describe how a recognizer would work for the set of strings containing only lowercase Roman letters
—a,b,...,z —such that each letter occurs twice in a row. For example, aaccaabbzz, is such a string,
but abb, 00bb, AAbb, and a are not. (Even better, actually write a recognizer procedure in your favorite
programming language).

A set of strings is called recognizable if there is a recognizer procedure for it. So the program you
described above proves that the set of strings with doubled letters from part (a) is recognizable.

When you actually program a procedure, you have to type the program text into a computer system. This
means that every procedure is described by some string of typed characters. If a string, s, is actually the
typed description of some string procedure, let’s refer to that procedure as Ps . You can think of Ps as the
result of compiling s.1

In fact, it will be helpful to associate every string, s, with a procedure, Ps . So if string s is not the typed
description of a string procedure, we will define Ps to be some fixed string procedure —say one that always
returns False; so if s is an ill-formed string, Ps will be a recognizer for the empty set of strings.

The result of this is that we have now defined a total function, f , mapping every string, s, to the set, f .s/,
of strings recognized by Ps . That is we have a total function,

f W string! pow.string/: (1)

(b) Explain why range.f / is the set of all recognizable sets of strings.

This is exactly the set up we need to apply the reasoning behind Russell’s Paradox to define a set that is
not in the range of f , that is, a set of strings, N , that is not recognizable.

(c) Let
N WWD fs 2 string j s … f .s/g:

Prove that N is not recognizable.

Hint: Similar to Russell’s paradox or the proof of Theorem 7.1.11.

(d) Discuss what the conclusion of part (c) implies about the possibility of writing “program analyzers”
that take programs as inputs and analyze their behavior.

1The string, s, and the procedure, Ps , have to be distinguished to avoid a type error: you can’t apply a string to string. For
example, let s be the string that you wrote as your program to answer part (a). Applying s to a string argument, say aabbccdd,
should throw a type exception; what you need to do is apply the procedure Ps to aabbccdd. This should result in a returned value
True, since aabbccdd consists of consecutive pairs of lowercase roman letters.

https://courses.csail.mit.edu/6.042/spring15/mcs.pdf#theorem.7.1.11

	Problem 1
	Problem 2
	Problem 3
	Problem 4

