In-Class Problems Week 5, Mon.

Problem 1.

The Elementary 18.01 Functions (F18's) are the set of functions of one real variable defined recursively as follows:

Base cases:

- The identity function, $id(x) ::= x$ is an F18,
- any constant function is an F18,
- \bullet the sine function is an F18.

Constructor cases:

If f , g are F18's, then so are

- 1. $f + g$, fg , 2^g ,
- 2. the inverse function f^{-1} ,
- 3. the composition $f \circ g$.
- (a) Prove that the function $1/x$ is an F18.

Warning: Don't confuse $1/x = x^{-1}$ with the inverse id⁻¹ of the identity function id(x). The inverse id⁻¹ is equal to id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01 Functions are *closed under taking derivatives*. That is, show that if $f(x)$ is an F18, then so is $f' ::= df/dx$. (Just work out 2 or 3 of the most interesting constructor cases; you may skip the less interesting ones.)

Problem 2.

Let p be the string $\lceil \cdot \rceil$. A string of brackets is said to be *erasable* iff it can be reduced to the empty string by repeatedly erasing occurrences of p. For example, here's how to erase the string $\lceil \lceil \lceil \rceil \rceil \rceil \rceil$.

$\llbracket \llbracket \llbracket \rrbracket \rrbracket \rrbracket \rrbracket \rrbracket \rrbracket \rrbracket \rightarrow \llbracket \rrbracket \rrbracket \rightarrow \rrbracket \rightarrow \lambda.$

On the other hand the string []] [[[[[]] is not erasable because when we try to erase, we get stuck:] [[[:

$[[]][[]][[]][[]]\rightarrow[[[]][[]]\rightarrow[[[]]\rightarrow$

Let Erasable be the set of erasable strings of brackets. Let RecMatch be the recursive data type of strings of *matched* brackets defined recursively:

• Base case: $\lambda \in \text{RecMatch}$.

²⁰⁰ 2015, Eric Lehman, F Tom Leighton, [Albert R Meyer.](http://people.csail.mit.edu/meyer) This work is available under the terms of the [Creative Commons](http://creativecommons.org/licenses/by-sa/3.0/) [Attribution-ShareAlike 3.0 license.](http://creativecommons.org/licenses/by-sa/3.0/)

.

п

• Constructor case: If $s, t \in \text{RecMatch}$, then $[s] t \in \text{RecMatch}$.

(a) Use structural induction to prove that

$$
RecMatch \subseteq Erasable.
$$

(b) Supply the missing parts (labeled by "(*)") of the following proof that

Erasable \subseteq RecMatch.

Proof. We prove by strong induction that every length n string in Erasable is also in RecMatch. The induction hypothesis is

 $P(n) ::= \forall x \in$ Erasable. $|x| = n$ IMPLIES $x \in$ RecMatch.

Base case:

(*) What is the base case? Prove that P is true in this case.

Inductive step: To prove $P(n + 1)$, suppose $|x| = n + 1$ and $x \in$ Erasable. We need to show that $x \in RecMatch$.

Let's say that a string y is an *erase* of a string z iff y is the result of erasing a *single* occurrence of p in z.

Since $x \in$ Erasable and has positive length, there must be an erase, $y \in$ Erasable, of x. So $|y| = n - 1 \ge 0$, and since $y \in$ Erasable, we may assume by induction hypothesis that $y \in$ RecMatch.

Now we argue by cases:

Case $(y$ is the empty string):

(*) Prove that $x \in \text{RecMatch}$ in this case.

Case $(y = \lceil s \rceil t$ for some strings $s, t \in \text{RecMatch}$: Now we argue by subcases.

• Subcase($x = py$):

(*) Prove that $x \in \text{RecMatch}$ in this subcase.

• Subcase (x is of the form $[s']t$ where s is an erase of s'):

Since $s \in \text{RecMatch}$, it is erasable by part [\(b\)](#page-1-0), which implies that $s' \in \text{Erasable}$. But $|s'| < |x|$, so by induction hypothesis, we may assume that $s' \in RecMatch$. This shows that x is the result of the constructor step of RecMatch, and therefore $x \in \text{RecMatch}$.

• Subcase (x is of the form $[s] t'$ where t is an erase of t'): (*) Prove that $x \in \text{RecMatch}$ in this subcase.

(*) Explain why the above cases are sufficient.

This completes the proof by strong induction on n, so we conclude that $P(n)$ holds for all $n \in \mathbb{N}$. Therefore $x \in \text{RecMatch}$ for every string $x \in \text{Erasable}$. That is, Erasable $\subseteq \text{RecMatch}$. Combined with part [\(a\)](#page-1-1), we conclude that

 $Erasable = RecMatch.$

Definition. Base case: $0 \in E$.

Constructor cases: If $n \in E$, then so are $n + 2$ and $-n$.

Provide similar simple recursive definitions of the following sets:

- (a) The set $S ::= \{2^k 3^m 5^n \in \mathbb{N} \mid k, m, n \in \mathbb{N}\}.$
- **(b)** The set $T := \{2^k 3^{2k+m} 5^{m+n} \in \mathbb{N} \mid k, m, n \in \mathbb{N}\}.$
- (c) The set $L := \{(a, b) \in \mathbb{Z}^2 \mid (a b) \text{ is a multiple of } 3\}.$

Let L' be the set defined by the recursive definition you gave for L in the previous part. Now if you did it right, then $L' = L$, but maybe you made a mistake. So let's check that you got the definition right.

(d) Prove by structural induction on your definition of L' that

$$
L' \subseteq L.
$$

(e) Confirm that you got the definition right by proving that

$$
L\subseteq L'.
$$

(f) See if you can give an *unambiguous* recursive definition of L.

Supplemental problem:

Problem 4.

Definition. The recursive data type, binary-2PTG, of *binary trees* with leaf labels, L, is defined recursively as follows:

- Base case: \langle leaf, $l \rangle \in$ binary-2PTG, for all labels $l \in L$.
- Constructor case: If $G_1, G_2 \in$ binary-2PTG, then

$$
\langle \text{bintree}, G_1, G_2 \rangle \in \text{binary-2PTG.}
$$

The *size*, $|G|$, of $G \in$ binary-2PTG is defined recursively on this definition by:

• Base case:

$$
|\langle \text{leaf}, l \rangle| ::= 1, \text{ for all } l \in L.
$$

• Constructor case:

$$
|\langle \text{bintree}, G_1, G_2 \rangle| ::= |G_1| + |G_2| + 1.
$$

For example, the size of the binary-2PTG, G, pictured in Figure [1,](#page-2-0) is 7.

(a) Write out (using angle brackets and labels bintree, leaf, etc.) the binary-2PTG, G, pictured in Figure [1.](#page-2-0)

The value of flatten(G) for $G \in$ binary-2PTG is the sequence of labels in L of the leaves of G. For example, for the binary-2PTG, G, pictured in Figure [1,](#page-2-0)

$$
flatten(G) = (win, lose, win, win).
$$

(b) Give a recursive definition of flatten. (You may use the operation of *concatenation* (append) of two sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

$$
2 \cdot \text{length}(\text{flatten}(G)) = |G| + 1. \tag{1}
$$

Figure 1 A picture of a binary tree G .