In-Class Problems Week 4, Mon.

Problem 1.

Prove by induction:

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n},$$
(1)

for all n > 1.

Problem 2. (a) Prove by induction that a $2^n \times 2^n$ courtyard with a 1×1 statue of Bill in *a corner* can be covered with L-shaped tiles. (Do not assume or reprove the (stronger) result of Theorem 5.1.2 that Bill can be placed anywhere. The point of this problem is to show a different induction hypothesis that works.)

(b) Use the result of part (a) to prove the original claim that there is a tiling with Bill in the middle.

Problem 3.

Any amount of 12 or more cents postage can be made using only 3ϕ and 7ϕ stamps. Prove this *by induction* using the induction hypothesis

S(n) ::= n + 12 cents postage can be made using only 3¢ and 7¢ stamps.

Problem 4.

The following Lemma is true, but the *proof* given for it below is defective. Pinpoint *exactly* where the proof first makes an unjustified step and explain why it is unjustified.

Lemma. For any prime p and positive integers $n, x_1, x_2, ..., x_n$, if $p \mid x_1x_2...x_n$, then $p \mid x_i$ for some $1 \le i \le n$.

Bogus proof. Proof by strong induction on *n*. The induction hypothesis, P(n), is that Lemma holds for *n*. **Base case** n = 1: When n = 1, we have $p | x_1$, therefore we can let i = 1 and conclude $p | x_i$. **Induction step**: Now assuming the claim holds for all k < n, we must prove it for n + 1.

So suppose $p | x_1x_2 \cdots x_{n+1}$. Let $y_n = x_nx_{n+1}$, so $x_1x_2 \cdots x_{n+1} = x_1x_2 \cdots x_{n-1}y_n$. Since the righthand side of this equality is a product of *n* terms, we have by induction that *p* divides one of them. If $p | x_i$ for some i < n, then we have the desired *i*. Otherwise $p | y_n$. But since y_n is a product of the two terms x_n, x_{n+1} , we have by strong induction that *p* divides one of them. So in this case $p | x_i$ for i = n or i = n + 1.

^{2015,} Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.