In-Class Problems Week 3, Fri.

Problem 1.
The inverse, R^{-1}, of a binary relation, R, from A to B, is the relation from B to A defined by:

$$b R^{-1} a \iff a R b.$$

In other words, you get the diagram for R^{-1} from R by “reversing the arrows” in the diagram describing R. Now many of the relational properties of R correspond to different properties of R^{-1}. For example, R is total iff R^{-1} is a surjection.

Fill in the remaining entries in this table:

<table>
<thead>
<tr>
<th>R is</th>
<th>R^{-1} is</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>a surjection</td>
</tr>
<tr>
<td>a function</td>
<td></td>
</tr>
<tr>
<td>a surjection</td>
<td></td>
</tr>
<tr>
<td>an injection</td>
<td></td>
</tr>
<tr>
<td>a bijection</td>
<td></td>
</tr>
</tbody>
</table>

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram for R.

Arrow Properties

Definition. A binary relation, R is

- is a *function* when it has the $[\leq 1 \text{ arrow out}]$ property.
- is *surjective* when it has the $[\geq 1 \text{ arrows in}]$ property. That is, every point in the righthand, codomain column has at least one arrow pointing to it.
- is *total* when it has the $[\geq 1 \text{ arrows out}]$ property.
- is *injective* when it has the $[\leq 1 \text{ arrow in}]$ property.
- is *bijective* when it has both the $[= 1 \text{ arrow out}]$ and the $[= 1 \text{ arrow in}]$ property.

Problem 2.
Let $A = \{a_0, a_1, \ldots, a_{n-1}\}$ be a set of size n, and $B = \{b_0, b_1, \ldots, b_{m-1}\}$ a set of size m. Prove that $|A \times B| = mn$ by defining a simple bijection from $A \times B$ to the nonnegative integers from 0 to $mn - 1$.

Problem 3.
Assume $f : A \to B$ is total function, and A is finite. Replace the \ast with one of $\leq, =, \geq$ to produce the strongest correct version of the following statements:
(a) \(|f(A)| \star |B|\).

(b) If \(f\) is a surjection, then \(|A| \star |B|\).

(c) If \(f\) is a surjection, then \(|f(A)| \star |B|\).

(d) If \(f\) is an injection, then \(|f(A)| \star |A|\).

(e) If \(f\) is a bijection, then \(|A| \star |B|\).

Problem 4.
Let \(R : A \to B\) be a binary relation. Use an arrow counting argument to prove the following generalization of the Mapping Rule 1.

Lemma. If \(R\) is a function, and \(X \subseteq A\), then
\[|X| \geq |R(X)|.\]

Problem 5. (a) Prove that if \(A \text{ surj } B\) and \(B \text{ surj } C\), then \(A \text{ surj } C\).

(b) Explain why \(A \text{ surj } B\) iff \(B \text{ inj } A\).

(c) Conclude from (a) and (b) that if \(A \text{ inj } B\) and \(B \text{ inj } C\), then \(A \text{ inj } C\).

(d) Explain why \(A \text{ inj } B\) iff there is a total injective function \((\geq 1 \text{ out}, \leq 1 \text{ in})\) from \(A\) to \(B\). \(^1\)

\(^1\)The official definition of \(\text{inj}\) is with a total injective relation \((\geq 1 \text{ out}, \leq 1 \text{ in})\)