In-Class Problems Week 10, Fri.

Problem 1. (a) How many of the billion numbers in the range from 1 to 10^9 contain the digit 1? (*Hint:* How many don't?)

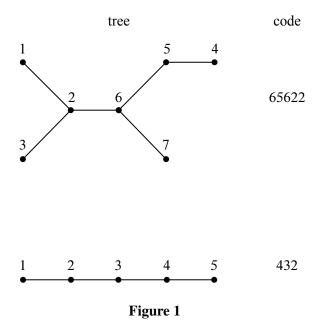
(b) There are 20 books arranged in a row on a shelf. Describe a bijection between ways of choosing 6 of these books so that no two adjacent books are selected and 15-bit strings with exactly 6 ones.

Problem 2.

An *n*-vertex numbered tree is a tree whose vertex set is $\{1, 2, ..., n\}$ for some n > 2. We define the *code* of the numbered tree to be a sequence of n - 2 integers from 1 to n obtained by the following recursive process:¹

If there are more than two vertices left, write down the *father* of the largest leaf, delete this *leaf*, and continue this process on the resulting smaller tree. If there are only two vertices left, then stop —the code is complete.

For example, the codes of a couple of numbered trees are shown in the Figure 1.



- (a) Describe a procedure for reconstructing a numbered tree from its code.
- (b) Conclude there is a bijection between the *n*-vertex numbered trees and $\{1, \ldots, n\}^{n-2}$, and state how many *n*-vertex numbered trees there are.

^{2015,} Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

¹The necessarily unique node adjacent to a leaf is called its *father*.

Problem 3.

(a) Let $S_{n,k}$ be the possible nonnegative integer solutions to the inequality

$$x_1 + x_2 + \dots + x_k \le n. \tag{1}$$

That is

$$S_{n,k} ::= \{(x_1, x_2, \dots, x_k) \in \mathbb{N}^k \mid (1) \text{ is true}\}.$$

Describe a bijection between $S_{n,k}$ and the set of binary strings with n zeroes and k ones.

(b) Let $\mathcal{L}_{n,k}$ be the length k weakly increasing sequences of nonnegative integers $\leq n$. That is

$$\mathcal{L}_{n,k} ::= \{ (y_1, y_2, \dots, y_k) \in \mathbb{N}^k \mid y_1 \le y_2 \le \dots \le y_k \le n \}.$$

Describe a bijection between $\mathcal{L}_{n,k}$ and $\mathcal{S}_{n,k}$.

Supplemental problem

Problem 4.

Let *X* and *Y* be finite sets.

- (a) How many binary relations from X to Y are there?
- (b) Define a bijection between the set $[X \to Y]$ of all total functions from X to Y and the set $Y^{|X|}$. (Recall Y^n is the Cartesian product of Y with itself n times.) Based on that, what is $|[X \to Y]|$?
- (c) Using the previous part, how many *functions*, not necessarily total, are there from X to Y? How does the fraction of functions vs. total functions grow as the size of X grows? Is it O(1), O(|X|), $O(2^{|X|})$,...?
- (d) Show a bijection between the powerset, pow(X), and the set $[X \to \{0, 1\}]$ of 0-1-valued total functions on X.
- (e) Let X be a set of size n and B_X be the set of all bijections from X to X. Describe a bijection from B_X to the set of permutations of X. This implies that there are how may bijections from X to X?

²A sequence in which all the elements of a set X appear exactly once is called a *permutation* of X.