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Uncountable
Sets
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Ry Countable Sets
[15] 8 [1]
A is countable iff can list it:
ay,41,05,.... example:
{0,1} ::= {finite bit strings}
Claim: {0,1}::= {o-bit strings)
is uncountable.
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Ol - Infinite Sizes

Are all sets the same size? NOI
Cantor's Theorem

shows how to keep finding

bigger infinities.
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- Diagonal Arguments
Suppose s _,S,,S,,... € {O,l}

o 1 2 3 n
So 0O 0 1 O 0
s 0o 1 1 O 0 1
s, 1 0 0 O 1 0
1 0 1 1 1 1

0
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Bl - @ Diagonal Arguments
Suppose so,sl,sz,...e{O,l}

3 n
0 0 0
0 0 1
S, 1 0 0 1 0
53 1 0 1 1 1
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S {0,1} is uncountable
Gom

So NOT[N surj {O,l}w and

{O,l}w surjN obviously
N "strictly smaller" than {O, l}w
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B30 - [ Diagonal Arguments
Eom -

Suppose S .S,.S,,..- € {O,l}w

..dif 02rs from every row!
So {0,1} cannot be listed:
this
will be missing
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ﬁéﬂ Strictly Smaller

A strict B = NOT(A surj B)
A is "strictly smaller” than B

SoN strict {O,l}w
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‘@ Cantor's Theorem

A strict pow(A)
for every set, A
(finite or infinite)
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B : @ Diagonal Arguments

G -

Suppose A={a,b,s,t,....de,..}
pow(A) = {f(a),f(b),f(s)....,f(d),...}
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3+ [ Diagonal Arguments

Suppose A={a,b,s,t,....de,..}
pow(A) = {f(a),f(b),f(s)....,f(d),...}

. d e .

f(a)

f(b)

f(s)

f(t)
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- Diagonal Arguments
EEIE -

Suppose A={a,b,s,t,...,de,..}
pow(A) = {f(a),f(b),f(s)....,f(d),...}
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Diagonal Arguments

Suppose A={a,b,s,t,....de,..}
pow(A) = {f(a),f(b) f(s)... f(d)
- - e d e

s, st e
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B : [
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So no f-arrow into D.
f is not a surjection.

QED

A strict Pow(A)
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%EE A strict Pow(A)
DI -
Pf: say have fcn f:A—pow(A).

Define a subset of A that is not in
the range of f: namely

Diiz={acA|a¢ f(a)}
Now D ¢ range(f) since it differs
from set f(a) at element al
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Albert R Meyer,  March 4, 2015

EEE N strict pow(N)

That is,
pow(N) is uncountable
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Proving Uncountability

Lemma: Lf A is uncountable
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{0,1}* again

We know

{0,1}° bij pow(N)

and pow(N) uncountable by
Cantor,

@00]

and C surjA then
C is uncountable
©.00]
{0,1}* again
We know

{0,1}” bij pow(N)

and pow(N) uncountable by

Cantor, so {O,1}*uncountable.
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Real Numbers Uncountable

R surj {O,l}w

map +r to binary rep

7 1/3 =111.010101...

@ 00]

maps to 111010101...
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Real Numbers Uncountable
R surj {o, 1}
map +r to binary rep

1/2 = .100000..
1/2 maps to 100000..
— 0111111...

-1/2 maps to 0111111..




