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  Zn

Zn.2 

    Just Remainders 

The integer interval  [0, n)  
under                 is called 
the ring of integers mod n   

Z
n

    

i+ j (Z
n
) ::= rem(i+ j, n)

i i j (Z
n
) ::= rem(i i j, n)

    +, i (Zn)
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  Zn
arithmetic

   3+ 6 = 2 (Z7)

    9 i 8 = 6 (Z11)
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r(k) abbrevs rem(k,n) 

    

r(i+ j) = r(i) + r(j) (Z
n
)

r(i i j) = r(i) i r(j) (Z
n
)

  Z versus Z
n
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i≡ j (mod n) IFF

r(i) = r(j) (Zn)

Zn.6 

≡ (mod n) versus Zn
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    Rules for 

Zn.7 

     
  Zn

  

(i+ j) + k = i+ (j+ k) associativity
0 + i= i identity

i+ (−i) = 0 inverse
i+ j = j+ i commutativity
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(i i j) i k = i i (j i k) associativity
1 i i= i identity

i i j = j i i commutativity

    Rules for 

Zn.8 

     
  Zn
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    Rules for 

Zn.9 

     
  Zn

   

distributivity
i i (j+ k)
= i i j + i i k
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    Rules for 

Zn.10 

     
  Zn

    3 i2 = 8 i2 (Z
10

)
no cancellation rule 

   3 ≠ 8 (Z10)
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Zn
* ::=   elements  of  Zn

            relatively prime to n

   

i∈ Z
n
* IFF gcd(i, n) = 1

IFF  i  is cancellable in Zn
IFF  i  has an inverse in Zn
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Zn
* ::=   elements  of  Zn

            relatively prime to n

   
φ(n) ::= Zn

*
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Euler’s Theorem 

   k
φ(n) = 1 (Zn)

   for k∈ Z
n
*
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Lemma 1 

   for k∈ Z
n
*, S⊆Zn

  
kS = S
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Lemma 1 

  
kS = S

  

proof :
s

1
≠ s

2
IMPLIES ks

1
≠ ks

2

since k is cancellable
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Lemma 2 

    i, j∈Zn
* IFF i i j∈Zn

*
   For i, j∈ Z

n
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Corollary 

   for k∈ Z
n
*

   Zn
* = kZ

n
*



5 

Albert R Meyer         March 11, 2015 Zn.18 

1 2 4 5 7 8 
φ(9) = 32-3 = 6 

   Z9
* =

permuting  
  Z9
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1 2 4 5 7 8 
2⋅ 2 4 8 1 5 7 

1 2 4 5 7 8    Z9
* =

permuting  
  Z9
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1 2 4 5 7 8 
2⋅ 2 4 8 1 5 7 
7⋅ 7 5 1 8 4 2 

permuting  
  Z9

   Z9
* =

Albert R Meyer         March 11, 2015 Zn.22 

Proof of Euler 

   Π Z
n
* =Π kZ

n
*

product 
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Π Z
n
* =Π kZ

n
*

= kφ(n) Π Z
n
*

Proof of Euler 
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Π Z
n
* =

= kφ (n) Π Z
n
*

Proof of Euler 
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1 =
kφ(n)

Proof of Euler 
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1 = kφ (n)

Proof of Euler 

QED 


