The Well Ordering Principle, II

Prime Products

Thm: Every integer \(> 1 \) is a product of primes.

Proof: (by contradiction) Suppose \{nonproducts\} is nonempty. By WOP, there is a least \(m > 1 \) that is a nonproduct. This \(m \) is not prime (else is a product of 1 prime).

Prime Products

Thm: Every integer \(> 1 \) is a product of primes.

...So \(m = j \cdot k \) for integers \(j,k \)
where \(m > j,k > 1 \). Now \(j,k < m \)
so both are prime products:
\(j = p_1 \cdot p_2 \cdots p_{94} \)
\(k = q_1 \cdot q_2 \cdots q_{213} \)

So \{counterexamples\} = \(\emptyset \). QED

Well Ordered Postage

available stamps: 5¢ 3¢

n is postal if can make \((n+8)\)¢ postage from 3¢ & 5¢ stamps.

Well Ordered Postage

available stamps: 5¢ 3¢

Thm: Every number is postal.
Prove by WOP. Suppose not. Let \(m \) be least counterexample.
That is,
• \(m \) is not postal,
• any number \(< m \) is postal

0 is postal: so \(m \neq 0 \)

\[m \neq 1: \quad m \neq 2: \]

Hence, \(m \geq 3 \).

Now \(m-3 \) is a number \(< m \), so is postal. But then \(m \) is postal too:
\[(m-3) + 3\text{¢} + 8\text{¢} = m + 8\text{¢} \]
\[\text{contradiction!} \]