More (Un)Countable Sets

The Real Numbers are Uncountable

Decimal expansions:

\[\sqrt{2} = 1.4142\ldots, \quad 5 = 5.000\ldots \]
\[\frac{1}{10} = 0.1000\ldots, \quad \frac{1}{3} = 0.333\ldots \]
\[\frac{1}{99} = 0.010101\ldots \]

Proving Uncountability

Lemma.

If \(U \) is an uncountable set and \(A \) surj \(U \),
then \(A \) is uncountable.

The Real Numbers are Uncountable

\(b(r) ::= 0.1 \) decimals of \(r \)

\[\sqrt{2} = 1.4142\ldots, \quad 5 = 5.000\ldots \]
\[\frac{1}{10} = 0.1000\ldots, \quad \frac{1}{3} = 0.333\ldots \]
\[\frac{1}{99} = 0.010101\ldots \]
The Real Numbers are Uncountable

\(b(r) := 0,1 \) decimals of \(r \)

\[\sqrt{2} = 1.4142\ldots, \quad b(5) = 000\ldots \]
\[\frac{1}{10} = 0.1000\ldots, \quad \frac{1}{3} = 0.333\ldots \]
\[\frac{1}{99} = 0.010101\ldots \]
The Real Numbers are Uncountable

\[b : \mathbb{R} \rightarrow \{0,1\}^\omega \]

is a surjective function

So \(\mathbb{R} \) is uncountable

Proving countability

Lemma.
If \(C \) is a countable set and \(C \text{ surj } A \),
then \(A \) is countable.

Sequences of positive ints
Sequences of \mathbb{Z}^+

e(n) ::= \text{exponents of primes in the factorization of } n

e(3^4 \cdot 7^{22} \cdot 23^{11}) = (4, 22, 11)

\[N \text{ surj } (\mathbb{Z}^+)^* \]

So $(\mathbb{Z}^+)^*$ is countable