Staff Solutions to Problem Set 5

Reading:
- Chapter 8. Number Theory: Congruences through 8.11. RSA Cryptosystem.

STAFF NOTE: Lectures covered: Number Theory (Congruences) Ch. 8.6-8.9; \(\mathbb{Z}_n \), Euler’s Theorem, Ch. 8.10; RSA, Ch. 8.11-8.12.

Problem 1.
The sum of the digits of the base 10 representation of an integer is congruent modulo 9 to that integer. For example

\[763 \equiv 7 + 6 + 3 \pmod{9}. \]

This is not always true for the hexadecimal (base 16) representation, however. For example,

\[(763)_{16} = 7 \cdot 16^2 + 6 \cdot 16 + 3 \equiv 7 \neq 7 + 6 + 3 \pmod{9}. \]

(a) For exactly what integers \(k > 1 \) is it true that the sum of the digits of the base 16 representation of an integer is congruent modulo \(k \) to that integer? Justify your answer.

Solution.

3, 5, 15.

Summing the digits mod \(k \) works iff \(16 \equiv 1 \pmod{k} \). This is equivalent to \(k \mid 16 - 1 = 15 \). So the three factors of 15 are exactly the \(k \)'s that work.

To see why only these \(k \)'s work, just look at two-digit hex numbers \(16c + d \) where \(c, d \in [0, 16) \). In this case the digit-sum requirement means that for all such \(c, d \),

\[16c + d \equiv c + d \pmod{k}, \]

so letting \(c = 1, d = 0 \) gives \(16 \equiv 1 \pmod{k} \).

(b) Give a rule that generalizes this sum-of-digits rule from base \(b = 16 \) to an arbitrary number base \(b > 1 \), and explain why your rule is correct.

Solution. By the reasoning of part (a) with “16” replaced by “\(b \)” a necessary and sufficient condition for a number \(k > 1 \) to satisfy the sum-of-digits condition is that \(k \) be a divisor of \(b - 1 \).

Problem 2.
Definition. Define the order of \(k \) over \(\mathbb{Z}_n \) to be

\[
\text{ord}(k, n) := \min \{ m > 0 \mid k^m = 1 \ (\mathbb{Z}_n) \}.
\]

If no positive power of \(k \) equals 1 in \(\mathbb{Z}_n \), then \(\text{ord}(k, n) := \infty \).

(a) Show that \(k \in \mathbb{Z}_n^* \) iff \(k \) has finite order in \(\mathbb{Z}_n \).

Solution. If \(k \) has finite order in \(\mathbb{Z}_n \), then \(k \text{ord}(k, n) \) is an inverse of \(k \) in \(\mathbb{Z}_n \), so \(k^2 \in \mathbb{Z}_n \) by Theorem 8.9.5.

Conversely, since \(\mathbb{Z}_n \) has \(n \) elements, some number must occur twice in the list

\[
k^0, k^1, k^2, \ldots, k^n \quad (\mathbb{Z}_n).
\]

That is,

\[
k^i = k^{i+m} \quad (\mathbb{Z}_n)
\]

for some \(i, m \in [1, n] \). But if \(k \in \mathbb{Z}_n^* \), then \(k \) is cancellable over \(\mathbb{Z}_n \), so we can cancel the first \(i \) of the \(k \)'s on both sides of (1) to get

\[
1 = k^m \quad (\mathbb{Z}_n).
\]

It follows that \(k \) has order \(< n \) \((\mathbb{Z}_n) \).

(b) Prove that for every \(k \in \mathbb{Z}_n^* \), the order of \(k \) over \(\mathbb{Z}_n \) divides \(\phi(n) \).

Hint: Let \(m = \text{ord}(k, n) \). Consider the quotient and remainder of \(\phi(n) \) divided by \(m \).

Solution. Proof. Let \(m = \text{ord}(k, n) \). Now we have

\[
1 = k^\phi(n) = k^m \cdot k^{\text{rem}(\phi(n), m)} \quad \text{(Euler)}
\]

\[
= (k^m)^{\text{qcnt}(\phi(n), m)} \cdot k^{\text{rem}(\phi(n), m)} \quad \text{(Division Theorem)}
\]

\[
= 1^{\text{qcnt}(\phi(n), m)} \cdot k^{\text{rem}(\phi(n), m)} \quad \text{(Def of m)}
\]

\[
= k^{\text{rem}(\phi(n), m)}. \quad (2)
\]

But \(\text{rem}(\phi(n), m) < m \) and \(m \) is the smallest positive power of \(k \) equal to 1 in \(\mathbb{Z}_n \), so (2) implies that \(\text{rem}(\phi(n), m) \) must equal 0, which means that \(m \mid \phi(n) \).

Problem 3.

In this problem we'll prove that for all integers \(a, m \) where \(m > 1 \),

\[
a^m \equiv a^{m-\phi(m)} \quad (\text{mod } m).
\]

(3)

Note that \(a \) and \(m \) need not be relatively prime.

Assume \(m = p_1^{k_1} \cdots p_n^{k_n} \) for distinct primes, \(p_1, \ldots, p_n \) and positive integers \(k_1, \ldots, k_n \).

(a) Show that if \(p_i \) does not divide \(a \), then

\[
a^{\phi(m)} \equiv 1 \quad (\text{mod } p_i^{k_i}).
\]
Solution.

\[a^{\phi(m)} = a^{\phi(p_i^{k_i}) \cdot \phi(m/p_i^{k_i})} \]
\[= \left(a^{\phi(p_i^{k_i})} \right)^{\phi(m/p_i^{k_i})} \]
\[\equiv 1^{\phi(m/p_i^{k_i})} \pmod{p_i^{k_i}} \quad \text{(Euler’s Theorem, since } \gcd(a, p_i) = 1) \]
\[= 1. \]

(b) Show that if \(p_i \mid a \) then

\[a^{m - \phi(m)} \equiv 0 \pmod{p_i^{k_i}}. \quad (4) \]

Solution. Since \(p_i \mid a \), we have \(p_i^{k_i} \mid a^{k_i} \). That is

\[a^{k_i} \equiv 0 \pmod{p_i^{k_i}}, \]

and hence

\[a^n \equiv 0 \pmod{p_i^{k_i}} \]

for any \(n \geq k_i \). So we need only show that \(m - \phi(m) \geq k_i \). But \(m - \phi(m) \) is the number of integers in \([0, m) \) that are not relatively prime to \(m \), and there are at least \(k_i \) of them, namely, \(0, p_i, p_i^2, \ldots, p_i^{k_i - 1} \).

(c) Conclude (3) from the facts above.

Hint: \(a^m - a^{m - \phi(m)} = a^{m - \phi(m)}(a^{\phi(m)} - 1) \).

Solution. Let \(b := a^m - a^{m - \phi(m)} \). So (3) holds iff \(b \equiv 0 \pmod{m} \). But using the hint that \(b = cd \) where \(c := a^{m - \phi(m)} \) and \(d := a^{\phi(m)} - 1 \), we have from part (a) that

\[
\begin{align*}
 c &\equiv 0 \pmod{p_i^{k_i}}, & \text{if } p_i \text{ does not divide } a, \\
 d &\equiv 0 \pmod{p_i^{k_i}}, & \text{if } p_i \mid a.
\end{align*}
\]

so in any case,

\[b = cd \equiv 0 \pmod{p_i^{k_i}} \quad \text{for } 1 \leq i \leq n. \]

This implies that \(b \equiv 0 \) modulo the product \(p_1^{k_1} \cdots p_n^{k_n} \), namely

\[b \equiv 0 \pmod{m}. \]