Staff Solutions to Miniquiz 4-14

Problem 1 (Practice with Big-Oh) (1 point).

Recall that if \(f \) and \(g \) are nonnegative real-valued functions on \(\mathbb{Z}^+ \), then \(f = O(g) \) iff there exist \(c, n_0 \in \mathbb{Z}^+ \) such that

\[
\forall n \geq n_0. \ f(n) \leq c g(n).
\]

For each pair of functions \(f \) and \(g \) below, indicate the smallest \(c \in \mathbb{Z}^+ \), and for that smallest \(c \), the smallest corresponding \(n_0 \in \mathbb{Z}^+ \), that would establish \(f = O(g) \) by the definition given above. If there is no such \(c \), write \(\infty \).

(a) \(f(n) = \frac{1}{2} \ln n^2, \ g(n) = n \).

Solution. \(f(n) = \ln n, \) and \(n \) exceeds \(\ln n \) for all positive \(n \). Thus \(c = 1 \) and \(n_0 = 1 \).

(b) \(f(n) = n, \ g(n) = n \ln n \).

Solution. Since \(\ln n \) eventually grows beyond 1, it must be that \(n \ln n \) eventually grows beyond \(n \). Thus \(c = 1 \). Now \(f(n) = n \leq c g(n) = g(n) = n \ln n \) precisely when \(1 \leq \ln n \). That is, when \(n \geq e \). So \(n_0 = \lfloor e \rfloor = 3 \).

(c) \(f(n) = 2^n, \ g(n) = n^4 \ln n \).

Solution. \(n^4 \ln n = o\left(n^5\right) \) since \(\ln n = o(n) \). Also, any polynomial is asymptotically smaller than any exponential whose base has magnitude greater than 1. So \(n^5 = o(2^n) \) and hence \(n^4 \ln n = o(2^n) \). Therefore \(f \neq O(g) \), so there do not exist finite \(c, n_0 \in \mathbb{Z}^+ \) that satisfy the required condition. Thus, here we write \(c = \infty \).

(d) \(f(n) = 3 \sin \left(\frac{\pi (n - 1)}{100} \right) + 2, \ g(n) = 0.2 \).

Solution. \(f(n) \) is periodic. Its minimum value is \(-1 \) and its maximum is \(5 \), so the smallest acceptable positive integer value for \(c \) is \(\frac{5}{0.2} = 25 \). Now, \(c g(n) \) exceeds or equals \(f(n) \) for all positive \(n \), so \(n_0 = 1 \).
Problem 2 (Bijections) (1 point).
Suppose n books are lined up on a shelf. The number of selections of m of the books so that selected books are separated by at least three unselected books is the same as the number of all length k binary strings with exactly m ones.

(a) What is the value of k?

Solution.

$$k = n - 3(m - 1).$$

(b) Describe a bijection between between the set of all length k binary strings with exactly m ones and such book selections.

Solution. A selection of m among n books on a shelf corresponds in an obvious way to a length n binary string with exactly m ones. So we need a bijection from length k strings with m ones to length n strings with m one’s that are at least three apart. Such a bijection is defined by replacing each of the first $m - 1$ ones in the length k string by 1000.

\[\blacksquare \]