What is a Set?

Informally:
A set is a collection of mathematical objects, with the collection treated as a single mathematical object.
(This is circular of course: what’s a collection?)

Familiar sets

- real numbers \(\mathbb{R} \)
- complex numbers \(\mathbb{C} \)
- integers \(\mathbb{Z} \)
- empty set \(\emptyset \)

A set of 4 things

\{7, “Albert R.”, \(\pi/2\), \(T\)\}

A set with 4 elements: two numbers, a string, and a Boolean.
Same as
\{\(T\), “Albert R.”, 7, \(\pi/2\)\}
-- order doesn’t matter
In or Not In

An element is in or not in a set:
\{7, \pi/2, 7\} is same as \{7, \pi/2\}
No notion of being in the set more than once.

Membership

\(x \) is a member of \(A \): \(x \in A \)
\(\pi/2 \in \{7, “Albert R.”, \pi/2, T\} \)
\(14/2 \in \)
\(\pi/3 \notin \)

Synonyms for Membership

\(x \in A \)
\(x \) is an element of \(A \)
\(x \) is in \(A \)

examples:
\(7 \in \mathbb{Z}, \ 2/3 \notin \mathbb{Z}, \ \mathbb{Z} \in \{T, \mathbb{Z}, 7 \} \)

Subset (\(\subseteq \))

\(A \subseteq B \) \(A \) is a subset of \(B \)
\(A \) is contained in \(B \)
Every element of \(A \) is also an element of \(B \):
\(\forall x \ [x \in A \ IMPLIES \ x \in B] \)
Subset

examples:

\(\mathbb{Z} \subseteq \mathbb{R} \), \(\mathbb{R} \subseteq \mathbb{C} \), \(\{3\} \subseteq \{5,7,3\} \)

\(A \subseteq A \), \(\emptyset \subseteq \) every set

\(\emptyset \subseteq \) everything

\(\emptyset \subseteq B \) is defined to mean

\(\forall x [x \in \emptyset \implies x \in B] \)

false \underline{true}

Defining Sets

The set of elements \(x \) in \(A \)

such that \(P(x) \) is true.

\(\{ x \in A \mid P(x) \} \)

Defining Sets

The set of elements \(x \) in \(A \)

such that \(P(x) \) is true.

\(\{ x \in A \mid P(x) \} \)
Defining Sets

The set E of even integers:

\[\{ n \in \mathbb{Z} \mid n \text{ is even} \} \]

Power Set

\[\text{pow}(A) ::= \text{all the subsets of } A = \{ B \mid B \subseteq A \} \]

example:

\[\text{pow}\{\{T, F\}\} = \{ \{T\}, \{F\}, \{T, F\}, \emptyset \} \]

$E \in \text{pow}(\mathbb{Z})$, $\mathbb{Z} \in \text{pow}(\mathbb{R})$

\[B \in \text{pow}(A) \text{ IFF } B \subseteq A \]