Noncomputable Sets

Computable strings in $\{0,1\}^\omega$

An infinite string s in $\{0,1\}^\omega$ is computable iff some procedure computes its digits.
(Procedure applied to argument n returns nth digit of s.)

{ASCII}* is countable

Only countably many finite ASCII strings. (List them in order of length.)
Procedures can be expressed in ASCII, so only countably many procedures.

Noncomputable strings in $\{0,1\}^\omega$

So only countably many computable infinite binary strings.
But $\{0,1\}^\omega$ is uncountable, so there must be noncomputable strings in $\{0,1\}^\omega$ — in fact, uncountably many!
The Halting Problem

There is no test procedure for halting of arbitrary procedures. The Halting Problem is not decidable by computational procedures.

String procedure P takes a String argument:

- $P(\text{"no"})$ returns 2
- $P(\text{"albert"})$ returns "meyer"
- $P(\text{"&%99!!"})$ causes an error
- $P(\text{"what now?"})$ runs forever.

Let s be the ASCII string defining P. Say s HALTS iff $P(s)$ returns something.

Suppose there was a procedure Q that decided HALTS:

- $Q(s)$ returns "yes" if s HALTS
- returns "no" otherwise
The Halting Problem

Modify Q to Q':

$Q'(s)$ returns "yes"
 if $Q(s)$ returns "no"
$Q'(s)$ returns nothing
 if $Q(s)$ returns "yes"

So s HALTS iff

$Q'(s)$ returns nothing

Let t be the text for Q'

So by def of HALTS:

t HALTS iff $Q'(t)$ returns

and by def of Q':

$Q'(t)$ returns iff $\neg(t$ HALTS)

CONTRADICTION:

t HALTS iff $\neg(t$ HALTS)

There can't be such a Q:

it is impossible to write a procedure that decides
whether strings HALT
The Type-checking Problem

There is no string procedure that type-checks perfectly, because:
Suppose C was a type-checking procedure: for program text s
$C(s)$ returns “yes” if s would cause
a run-time type error
returns “no” otherwise.

Use C to get a HALTS Tester H:
to compute $H(s)$, construct a
new program text, s', that
acts like a slightly modified interpreter for s. Namely:

- s' skips any command that
 would cause s to make a
 run-time type error.
- s' purposely makes a type-
 error when it finds that s
 HALTS.

Then compute $C(s')$ and
return the same value.

So s HALTS
iff s' makes run-time type error
iff $C(s')$ = “yes”
iff $H(s)$ = “yes”
Then compute \(C(s') \) and return the same value.
So \(s \) does not HALT iff \(s' \) makes no run-time error iff \(C(s') = \text{"no"} \) iff \(H(s) = \text{"no"} \)

\(H \) solves the Halting Problem, a contradiction. So \(C \) must not error check correctly.

No run-time properties are decidable
The same reasoning shows that there is no perfect checker for essentially any property of procedure outcomes.