Number Theory: Die Hard

Generalized Die Hard

Under Die Hard rules, gal.’s in each bucket are linear combinations of a and b

Did it with buckets:
3 gal. & 5 gal.
3 gal. & 9 gal.
Now a gal. & b gal.?
Claim: Can get any linear combination of \(a, b \) into a bucket (if there’s room for it). Namely, say \(0 \leq sa + tb < b \). Get \(sa + tb \) into the \(b \) gal. bucket as follows:

Generalized Die Hard

In fact, no need to count: fill bucket \(a \), pour into \(b \) — if \(b \) fills, empty it — until desired gal.’s in \(b \)!

assume \(s > 0 \). do \(s \) times:

fill bucket \(a \), pour into \(b \) — if \(b \) fills, empty it.

total fills = \(sa \)

\(0 \leq \) amount left < \(b \)

\# \(b \) emptyings must be \(-t\)