Staff Solutions to Mini-Quiz 4

STAFF NOTE: Infinite Cardinality; The Halting Problem, Ch. 7; Number Theory: GCD’s, Ch. 8–8.4; Number Theory: Modular Arithmetic, Ch. 8.5–8.9

Problem 1 (6 points).
Prove that if \(A \) and \(B \) are countable sets, then so is \(A \cup B \).

Solution. Proof. Suppose the list of distinct elements of \(A \) is \(a_0, a_1, \ldots \) and the list of \(B \) is \(b_0, b_1, \ldots \). Then a list of all the elements in \(A \cup B \) is just

\[
a_0, b_0, a_1, b_1, \ldots a_n, b_n, \ldots
\]

(1)

Of course this list will contain duplicates if \(A \) and \(B \) have elements in common, but then deleting all but the first occurrences of each element in list (1) leaves a list of all the distinct elements of \(A \) and \(B \).

STAFF NOTE: If students get stuck, give them the hint that it’s just like the bijection between \(\mathbb{N} \) and \(\mathbb{Z} \) given in the notes (7.2).

Problem 2 (4).
[points = 4] A majority of the following statements are equivalent to each other. List all statements in this majority. Assume that \(n > 0 \) and \(a \) and \(b \) are integers.

1. \(a \equiv b \pmod{n} \)
2. \(a = b \)
3. \(n \mid (a - b) \)
4. \(\exists k \in \mathbb{Z}. a = b + nk \)
5. \((a - b) \) is a multiple of \(n \)
6. \(\text{rem}(a, n) = \text{rem}(b, n) \)
7. \(a \equiv \text{rem}(b, n) \pmod{n} \)

Solution. 1,3,4,5,6,7