Staff Solutions to Mini-Quiz 4

Problem 1 (4 points).
Start with 110 coins on a table, 10 showing heads and 100 showing tails.

There are two ways to change the coins:

(i) Remove 20 coins from the table, 10 of which must be heads and the other 10 must be tails, or

(ii) Let \(n \) be the number of heads showing. If there are more tails than heads on the table, place \(n \) additional coins, all showing heads, on the table.

(a) Model this situation as a state machine, carefully defining the set of states, the start state and the possible state transitions. *Hint:* Be sure to state the conditions of the state transitions.

Solution. States are tuples of the form \((H, T)\) where \(H \geq 0 \) and \(T \geq 0 \). The start state is \((10, 100)\). The transitions are of the form \((H, T) \rightarrow (2H, T)\) with the restriction of \(T > H \), and \((H, T) \rightarrow (H - 10, T - 10)\) with the restriction of \(H \geq 10 \) and \(T \geq 10 \).

(b) Let \(H \) := the number of heads and \(T \) := the number of tails. For each of the derived variables below, indicate the strongest of the following properties that it satisfies: constant \(C \), strictly increasing \(Sinc \), strictly decreasing \(Sdec \), weakly increasing \(Winc \), weakly decreasing \(Wdec \), none of these \(N \).

1. \(T \)
2. \(H + T \)
3. \(T - H \)
4. \(2T - H \)

Solution.
1. \(T \): weakly decreasing
2. \(H + T \): none
3. \(T - H \): weakly decreasing
4. \(2T - H \): strictly decreasing

Problem 2 (6 points).
The set, \(M \), of strings of brackets is recursively defined as follows:

Base case: \(\lambda \in M \).

Constructor cases: If \(s, t \in M \), then

- \([s] \in M\), and
- \(s \cdot t \in M\).
The set, RecMatch, of strings of matched brackets was defined recursively in class. Recall the definition:

Base case: \(\lambda \in \text{RecMatch} \).

Constructor case: If \(s, t \in \text{RecMatch} \), then \([s]t \in \text{RecMatch} \).

Fill in the following parts of a proof by structural induction that

\[
\text{RecMatch} \subseteq M. \tag{1}
\]

(a) State an **induction hypothesis** suitable for proving (1) by structural induction.

Solution.

\[
P(x) ::= x \in M
\]

(b) State and prove the **base case(s).**

Solution. **Base case** \((x = \lambda)\): By definition of \(M\), the empty string is in \(M\).

(c) Prove the **inductive step.**

Solution. **Proof.** **Constructor case** \((x = [s]t \text{ for } s, t \in \text{RecMatch})\): By structural induction hypothesis, we may assume that \(s, t \in M\). By the first constructor case of \(M\), it follows that \([s] \in M\). Then, by the second constructor case of \(M\), it follows that \([s]t \in M\).

As a matter of fact, \(M = \text{RecMatch}\), though we won’t prove this. An advantage of the RecMatch definition is that it is **unambiguous**, while the definition of \(M\) is ambiguous.

(d) Give an example demonstrating that \(M\) is ambiguously defined.

Solution. Consider derivations of the empty string. This could be derived directly from the base case \(\lambda\), or by starting with \(\lambda\) and then constructing \(\lambda\lambda\) through the second constructor case.