Staff Solutions to In-Class Problems Week 11, Wed.

Problem 1.
The famous mathematician, Fibonacci, has decided to start a rabbit farm to fill up his time while he’s not making new sequences to torment future college students. Fibonacci starts his farm on month zero (being a mathematician), and at the start of month one he receives his first pair of rabbits. Each pair of rabbits takes a month to mature, and after that breeds to produce one new pair of rabbits each month. Fibonacci decides that in order never to run out of rabbits or money, every time a batch of new rabbits is born, he’ll sell a number of newborn pairs equal to the total number of pairs he had three months earlier. Fibonacci is convinced that this way he’ll never run out of stock.

(a) Define the number, \(r_n \), of pairs of rabbits Fibonacci has in month \(n \), using a recurrence relation. That is, define \(r_n \) in terms of various \(r_i \) where \(i < n \).

Solution. According to the description above, \(r_0 = 0 \) and \(r_1 = 1 \). Since the rabbit pair received at the first month is too young to breed, \(r_2 = 1 \) as well. After that, \(r_n \) is equal to the number, \(r_{n-1} \), of rabbit pairs in the previous month, plus the number of newborn pairs, minus the number, \(r_{n-3} \), he sells. The number of newborn pairs equals to the number of breeding pairs from the previous month, which is precisely the total number, \(r_{n-2} \), of pairs from two months before.

Thus,

\[
r_n = r_{n-1} + (r_{n-2} - r_{n-3}).
\]

(b) Let \(R(x) \) be the generating function for rabbit pairs,

\[
R(x) := r_0 + r_1 x + r_2 x^2 + \cdots
\]

Express \(R(x) \) as a quotient of polynomials.

Solution. Reasoning as in the derivation of the generating function for the original Fibonacci numbers, we have

\[
R(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3 + r_4 x^4 + \cdots
\]

\[
-xR(x) = -r_0 x - r_1 x^2 - r_2 x^3 - r_3 x^4 - \cdots
\]

\[
-x^2 R(x) = -r_0 x^2 - r_1 x^3 - r_2 x^4 - \cdots
\]

\[
x^3 R(x) = + r_0 x^3 + r_1 x^4 + \cdots
\]

\[
R(x)(1 - x - x^2 + x^3) = r_0 + (r_1 - r_0)x + (r_2 - r_1 - r_0)x^2 + 0x^3 + 0x^4 + \cdots
\]

\[
= 0 + 1x + 0x^2.
\]

so

\[
R(x) = \frac{x}{1 - x - x^2 + x^3} = \frac{x}{(1 + x)(1 - x)^2}.
\]

(c) Find a partial fraction decomposition of the generating function \(R(x) \).
Solution. We know
\[R(x) = \frac{A}{1 + x} + \frac{B}{1 - x} + \frac{C}{(1 - x)^2} \]
for some numbers \(A, B, C\). Multiplying both sides of this equation by \((1 + x)(1 - x)^2\) gives
\[x = A(1 - x)^2 + B(1 + x)(1 - x) + C(1 + x). \]
Letting \(x = 1\) gives \(C = 1/2\), letting \(x = -1\) gives \(A = -1/4\), and letting \(x = 0\) then gives \(B = -(A + C) = -1/2\).

(d) Finally, use the partial fraction decomposition to come up with a closed form expression for the number of pairs of rabbits Fibonacci has on his farm on month \(n\).

Solution. We find the coefficient as the sum of the coefficients for each term in the partial fraction expansion.
\[
\begin{align*}
A/(1 + x) &= -1/4 - (1/4)(-x) = (1/4)(-x)^2 - \cdots = (1/4)(-x)^n - \cdots \\
B/(1 - x) &= -1/4 - (1/4)x = (1/4)x^2 - \cdots = (1/4)x^n - \cdots \\
C/(1 - x)^2 &= 1/2 + (2/2)x = (3/2)x^2 + \cdots = ((n + 1)/2)x^n + \cdots \\
R(x) &= 1x + 1x^2 + \cdots + (n+1/2 - (-1)^n+1/4)x^n + \cdots
\end{align*}
\]
so
\[r_n = \left\lfloor \frac{n}{2} \right\rfloor. \]

Problem 2.
Less well-known than the Towers of Hanoi — but no less fascinating — are the Towers of Sheboygan. As in Hanoi, the puzzle in Sheboygan involves 3 posts and \(n\) rings of different sizes. The rings are placed on post #1 in order of size with the smallest ring on top and largest on bottom.

The objective is to transfer all \(n\) rings to post #2 via a sequence of moves. As in the Hanoi version, a move consists of removing the top ring from one post and dropping it onto another post with the restriction that a larger ring can never lie above a smaller ring. But unlike Hanoi, a local ordinance requires that a ring can only be moved from post #1 to post #2, from post #2 to post #3, or from post #3 to post #1. Thus, for example, moving a ring directly from post #1 to post #3 is not permitted.

(a) One procedure that solves the Sheboygan puzzle is defined recursively: to move an initial stack of \(n\) rings to the next post, move the top stack of \(n - 1\) rings to the furthest post by moving it to the next post two times, then move the big, \(n\)th ring to the next post, and finally move the top stack another two times to land on top of the big ring. Let \(s_n\) be the number of moves that this procedure uses. Write a simple linear recurrence for \(s_n\).

Solution.
\[
\begin{align*}
s_0 &= 0, \\
s_n &= 2s_{n-1} + 1 + 2s_{n-1} = 4s_{n-1} + 1 & \text{for } n > 0.
\end{align*}
\]

(b) Let \(S(x)\) be the generating function for the sequence \(\langle s_0, s_1, s_2, \ldots \rangle\). Carefully show that
\[S(x) = \frac{x}{(1 - x)(1 - 4x)}. \]
Solution.

\[
S(x) = s_0 + s_1 x + s_2 x^2 + s_3 x^3 + \cdots.
\]

\[
-4xS(x) = -4s_0 x - 4s_1 x^2 - 4s_2 x^3 - \cdots.
\]

\[
\frac{-1}{(1 - x)} = -1 - x - x^2 - x^3 - \cdots.
\]

\[
\frac{1}{1 - x} = 1 + 0x + 0x^2 + 0x^3 + \cdots.
\]

so

\[
S(x)(1 - 4x) - \frac{1}{1 - x} = -1.
\]

and

\[
S(x) = \frac{x}{(1 - x)(1 - 4x)}.
\]

(c) Give a simple formula for \(s_n\).

Solution. We can express \(x/(1 - x)(1 - 4x)\) using partial fractions as

\[
\frac{x}{(1 - x)(1 - 4x)} = \frac{a}{1 - x} + \frac{b}{1 - 4x}
\]

for some constants \(a, b\). Multiplying both sides of (3) by the left hand denominator yields

\[
x = a(1 - 4x) + b(1 - x).
\]

Letting \(x = 1\) yields \(a = -1/3\) and letting \(x = 1/4\) yields \(b = 1/3\). Now from (3), we have

\[
S(x) = \frac{-1/3}{1 - x} + \frac{1/3}{1 - 4x}
\]

so

\[
s_n = \frac{1}{3} + \frac{1}{3} 4^n = \frac{4^n - 1}{3}.
\]

(d) A better (indeed optimal, but we won’t prove this) procedure to solve the Towers of Sheboygan puzzle can be defined in terms of two mutually recursive procedures, procedure \(P_1(n)\) for moving a stack of \(n\) rings 1 pole forward, and \(P_2(n)\) for moving a stack of \(n\) rings 2 poles forward. This is trivial for \(n = 0\). For \(n > 0\), define:

\(P_1(n)\): Apply \(P_2(n - 1)\) to move the top \(n - 1\) rings two poles forward to the third pole. Then move the remaining big ring once to land on the second pole. Then apply \(P_2(n - 1)\) again to move the stack of \(n - 1\) rings two poles forward from the third pole to land on top of the big ring.

\(P_2(n)\): Apply \(P_2(n - 1)\) to move the top \(n - 1\) rings two poles forward to land on the third pole. Then move the remaining big ring to the second pole. Then apply \(P_1(n - 1)\) to move the stack of \(n - 1\) rings one pole forward to land on the first pole. Now move the big ring 1 pole forward again to land on the third pole. Finally, apply \(P_2(n - 1)\) again to move the stack of \(n - 1\) rings two poles forward to land on the big ring.

Let \(t_n\) be the number of moves needed to solve the Sheboygan puzzle using procedure \(P_1(n)\). Show that

\[
t_n = 2t_{n-1} + 2t_{n-2} + 3,
\]

for \(n > 1\).

Hint: Let \(u_n\) be the number of moves used by procedure \(P_2(n)\). Express each of \(t_n\) and \(u_n\) as linear combinations of \(t_{n-1}\) and \(u_{n-1}\) and solve for \(t_n\).
Solution. From the definitions of procedures P_1 and P_2 we have

\begin{align*}
t_0 &= 0, \\
u_0 &= 0, \\
t_n &= u_{n-1} + 1 + u_{n-1} \quad \text{for } n > 0, \quad (6) \\
u_n &= u_{n-1} + 1 + t_{n-1} + 1 + u_{n-1} \quad \text{for } n > 0. \quad (7)
\end{align*}

Using (6) to get $u_{n-1} = (t_n - 1)/2$ and then expressing u’s in (7) in terms of t’s, we conclude that for $n > 0$,

\begin{equation}
\frac{t_{n+1} - 1}{2} = (t_n - 1) + t_{n-1} + 2
\end{equation}

so

\begin{equation}
t_{n+1} = 2t_n + 2t_{n-1} + 3,
\end{equation}

which is the same as the given recurrence (5) with $n + 1$ replacing n. \hfill \blacksquare

(e) Derive values a, b, c, α, β such that

\begin{equation}
t_n = a\alpha^n + b\beta^n + c.
\end{equation}

Conclude that $t_n = o(s_n)$.

Solution.

\begin{equation}
t_n = \frac{(1 + \sqrt{3})^n}{3 - \sqrt{3}} + \frac{(1 - \sqrt{3})^n}{3 + \sqrt{3}} - 1. \quad (8)
\end{equation}

In particular, we conclude that $t_n = \Theta((1 + \sqrt{3})^n)$. Since $s_n = \Theta(4^n)$, this implies that $t_n = o(s_n)$. So the second procedure for moving a stack of n rings is significantly more efficient than the first one.

The derivation of (8) is similar to the one for s_n:

\begin{align*}
T(x) &= t_0 + t_1x + t_2x^2 + t_3x^3 + \cdots, \\
-2xT(x) &= -2t_0x - 2t_1x^2 - 2t_2x^3 - \cdots, \\
-2x^2T(x) &= -3x - 3x^2 - 3x^3 - \cdots, \\
-3/(1-x) &= -3 - (t_1 - 2t_0 - 3)x + 0x^2 + 0x^3 + \cdots.
\end{align*}

so

\begin{equation}
T(x)(1 - 2x - 2x^2) = \frac{3}{1-x} - 3 - 2x
\end{equation}

\begin{equation}
= \frac{2x^2 + x}{1-x},
\end{equation}

and

\begin{equation}
T(x) = \frac{2x^2 + x}{(1-x)(1 - 2x - 2x^2)} = \frac{2x^2 + x}{(1-x)(1-\alpha x)(1-\beta x)} \quad (9)
\end{equation}

where $\alpha = 1 + \sqrt{3}, \beta = 1 - \sqrt{3}$. This implies that $T(x)$ can be expressed using partial fractions as

\begin{equation}
T(x) = \frac{a}{1-\alpha x} + \frac{b}{1-\beta x} + \frac{c}{1-x} \quad (10)
\end{equation}
To find \(a, b, c\), multiply both sides of (10) by \((1 - \alpha x)(1 - \beta x)(1 - x)\) to get
\[
2x^2 + x = a(1 - \beta x)(1 - x) + b(1 - \alpha x)(1 - x) + c(1 - \alpha x)(1 - \beta x). \tag{11}
\]

Letting \(x = 1\) gives
\[
3 = c(1 - \alpha)(1 - \beta) = c(-3)
\]
so \(c = -1\). Similarly, letting \(x = 1/\alpha\) gives (after a little calculation) \(a = 1/(3 - \sqrt{3})\), and letting \(x = 1/\beta\) gives \(b = 1/(3 + \sqrt{3})\).

Finally, since \(\binom{x}{n} \cdot \frac{1}{(1 - \delta x)^3} = d\delta^n\),

we conclude that
\[
t_n = a\alpha^n + b\beta^n + c1^n \\
= \frac{1}{3 - \sqrt{3}}(1 + \sqrt{3})^n + \frac{1}{3 + \sqrt{3}}(1 - \sqrt{3})^n - 1
\]

STAFF NOTE: Unlikely to be time for a third problem. Tell students not to worry about it.

Problem 3. (a) Let
\[
S(x) := \frac{x^2 + x}{(1 - x)^3}.
\]

What is the coefficient of \(x^n\) in the generating function series for \(S(x)\)?

Solution. \(n^2\). That is, \(S(x) = \sum_{n=1}^{\infty} n^2 x^n\).

To see why, note that the coefficient of \(x^n\) in \(1/(1 - x)^3\) is, by the Convolution Rule, the number of ways to select \(n\) items of three different kinds, namely,
\[
\binom{n + 2}{2} = \frac{(n + 2)(n + 1)}{2}.
\]

Now the coefficient of \(x^n\) in \(x^2/(1 - x)^3\) is the same as the coefficient of \(x^{n-2}\) in \(1/(1 - x)^3\), namely, \(((n - 2) + 2)((n - 2) + 1)/2 = n(n - 1)/2\). Similarly, the coefficient of \(x^n\) in \(x/(1 - x)^3\) is the same as the coefficient of \(x^{n-1}\) in \(1/(1 - x)^3\), namely, \(((n - 1) + 2)((n - 1) + 1)/2 = (n + 1)n/2\). The coefficient of \(x^n\) in \(S(x)\) is the sum of these two coefficients, namely,
\[
\frac{n(n - 1)}{2} + \frac{(n + 1)n}{2} = \frac{(n^2 - n) + (n^2 + n)}{2} = n^2.
\]

(b) Explain why \(S(x)/(1 - x)\) is the generating function for the sums of squares. That is, the coefficient of \(x^n\) in the series for \(S(x)/(1 - x)\) is \(\sum_{k=1}^{n} k^2\).

Solution.
\[
\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k \cdot 1\right) x^n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k\right) x^n \tag{12}
\]
by the convolution formula for the product of series. For \(S(x) \), the coefficient of \(x^k \) is \(a_k = k^2 \), and

\[
S(x)/(1 - x) = S(x) \left(\sum_{n=0}^{\infty} x^n \right),
\]

so (12) implies that the coefficient of \(x^n \) in \(S(x)/(1 - x) \) is the sum of the first \(n \) squares. \(\blacksquare \)

(e) Use the previous parts to prove that

\[
\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}.
\]

Solution. We have

\[
S(x) = \left(\frac{x(1+x)}{(1-x)^2} \right) = \frac{x + x^2}{(1 - x)^4}.
\]

The coefficient of \(x^n \) in the series expansion of \(1/(1 - x)^4 \) is

\[
\binom{n + 3}{3} = \frac{(n + 1)(n + 2)(n + 3)}{3!}.
\]

But by (13),

\[
\frac{S(x)}{1 - x} = \frac{x}{(1 - x)^4} + \frac{x^2}{(1 - x)^4},
\]

so the coefficient of \(x^n \) is the sum of the \((n - 1) \)st and \((n - 2) \)nd coefficients of \((1 - x)^4 \), namely,

\[
\frac{n(n + 1)(n + 2)}{3!} + \frac{(n - 1)n(n + 1)}{3!} = \frac{n(n + 1)(2n + 1)}{6}.
\]

\(\blacksquare \)