
1

Mathematics for Computer Science

First Edition
revised June 1, 2009, 780 minutes

Prof. Albert R Meyer
Massachussets Institute of Technology

Creative Commons 2009, Prof. Albert R. Meyer.

http://people.csail.mit.edu/meyer

2

Chapter 1

Induction

1.1 Ordinary Induction

Induction is by far the most powerful and commonly-used proof technique in Discrete Mathemat-
ics and Computer Science. In fact, the use of induction is a defining characteristic of discrete —as
opposed to continuous —Mathematics.

To understand how induction works, suppose there is a professor who brings to class a bottomless
bag of assorted miniature candy bars. She offers to share the candy in the following way. First,
she lines the students up in order. Now she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets candy bar, then the next student in line also gets a candy bar, for every
student in the line.

Let’s number the students by their order in line, starting the count with 0, as usual in Computer
Science. Now we can understand the second rule as a short description of a whole sequence of
statements:

• If student 0 gets a candy bar, then student 1 also gets one.

• If student 1 gets a candy bar, then student 2 also gets one.

• If student 2 gets a candy bar, then student 3 also gets one.
...

Of course it’s also a lot shorter to rephrase this whole sequence of statements in mathematical
style:

Creative Commons 2009, Prof. Albert R. Meyer.

3

http://people.csail.mit.edu/meyer

4 CHAPTER 1. INDUCTION

If student number n gets a candy bar, then student number n + 1 gets a candy bar, for
all nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy bar? Well,
student 0 gets a candy bar by the first rule. Therefore, by the second rule, student 1 also gets
one, which means student 2 gets one, which means student 3 gets one as well, and so on. By 17
applications of the professor’s second rule, you get your candy bar! Of course the rules actually
guarantee a candy bar to every student, no matter how far back in line they may be.

Our reasoning about candy is an instance of

The Principle of Induction.

Let P (n) be a predicate. If

• P (0) is true, and

• P (n) implies P (n + 1) for all nonnegative integers, n,

then

• P (m) is true for all nonnegative integers, m.

Formulated as a proof rule, this would be

Rule. Induction Rule
P (0), ∀n ∈ N [P (n) implies P (n + 1)]

∀m ∈ N. P (m)

Since we’re going to consider several useful variants of induction in later sections, we’ll refer to
the induction method described above as Ordinary Induction when we need to distinguish it.

So our claim that all the Professor’s students get a candy bar was simply an application of the
Induction Rule with P (n) defined to be the predicate, “student n gets a candy bar.”

This general Induction Rule works for the same intuitive reason that all the students get candy
bars, and we hope the explanation using candy bars makes it clear why the soundness of the
Ordinary Induction can be taken for granted. In fact, the Rule is so obvious that it’s hard to see
what more basic principle could be used to justify it.1 What’s not so obvious is how much mileage
we get by using it.

1.1.1 Using Ordinary Induction

Ordinary Induction often works directly in proving that some statement about nonnegative inte-
gers holds for all of them. For example, here is a classic formula:

1But see section 1.3.

1.1. ORDINARY INDUCTION 5

Theorem 0.1. For all n ∈ N,

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
(1.1)

The left side of equation (1.1) represents the sum of all the numbers from 1 to n. Here the dots (· · ·)
indicate a pattern you’re supposed to be able to guess so you can mentally fill in the remaining
terms.

The meaning of this sum is not so obvious in a couple of special cases:

• If n = 1, then there is only one term in the summation, and so 1 + 2 + 3 + · · ·+ n = 1. Don’t
be misled by the appearance of 2 and 3 and the suggestion that 1 and n are distinct terms!

• If n ≤ 0, then there are no terms at all in the summation. By convention, the sum in this case
is 0.

So while the dots notation is convenient, you have to watch out for these special cases where the
notation is misleading! (In fact, whenever you see the dots, you should be on the lookout to be
sure you understand the pattern.)

We could eliminate the need for guessing by rewriting the left side of (1.1) with summation notation:

n∑
i=1

i or
∑

1≤i≤n

i.

Both of these expressions denote the sum of all values taken on by the expression to the right of
the sigma as the variable, i, ranges from 1 to n. Both these summation expressions make it clear
what (1.1) means when n = 1. The second expression makes it clear that when n = 0, there are no
terms in the sum, though you still have to know the convention that a sum of no numbers equals
0 (the product of no numbers is 1, by the way).

Now let’s use the induction principle to prove Theorem 0.1. Suppose that we define predicate
P (n) to be “1 + 2 + 3 + · · ·+ n = n(n + 1)/2”. Recast in terms of this predicate, the theorem claims
that P (n) is true for all n ∈ N. This is great, because the induction principle lets us reach precisely
that conclusion, provided we establish two simpler facts:

• P (0) is true.

• For all n ∈ N, P (n) implies P (n + 1).

So now our job is reduced to proving these two statements. The first is true because P (0) asserts
that a sum of zero terms is equal to 0(0 + 1)/2 = 0.

The second statement is more complicated. But remember the basic plan for proving the validity
of any implication: assume the statement on the left and then prove the statement on the right. In
this case, we assume P (n):

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
(1.2)

6 CHAPTER 1. INDUCTION

in order to prove P (n + 1):

1 + 2 + 3 + · · ·+ n + (n + 1) =
(n + 1)(n + 2)

2
(1.3)

These two equations are quite similar; in fact, adding (n + 1) to both sides of equation (1.2) and
simplifying the right side gives the equation (1.3):

1 + 2 + 3 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
(n + 2)(n + 1)

2

Thus, if P (n) is true, then so is P (n + 1). This argument is valid for every nonnegative integer n,
so this establishes the second fact required by the induction principle. In effect, we’ve just proved
that P (0) implies P (1), P (1) implies P (2), P (2) implies P (3), etc., all in one fell swoop.

With these two facts in hand, the induction principle says that the predicate P (n) is true for all
nonnegative n, so the theorem is proved.

Problem 1. Prove by induction on n that

1 + r + r2 + · · ·+ rn =
rn+1 − 1

r − 1
(1.4)

for all n ∈ N and numbers r 6= 1.

1.1.2 A Template for Induction Proofs

The proof of Theorem 0.1 was relatively simple, but even the most complicated induction proof
follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall structure of the
proof, which helps the reader understand your argument.

2. Define an appropriate predicate P (n). The eventual conclusion of the induction argument
will be that P (n) is true for all nonnegative n. Thus, you should define the predicate P (n) so
that your theorem is equivalent to (or follows from) this conclusion. Often the predicate can
be lifted straight from the claim, as in the example above. The predicate P (n) is called the
“induction hypothesis”. Sometimes the induction hypothesis will involve several variables,
in which case you should indicate which variable serves as n.

3. Prove that P (0) is true. This is usually easy, as in the example above. This part of the proof
is called the “base case” or “basis step”. (Sometimes the base case will be n = 1 or even some
larger number, in which case the starting value of n also should be stated.)

4. Prove that P (n) implies P (n+1) for every nonnegative integer n. This is called the “induc-
tive step” or “induction step”. The basic plan is always the same: assume that P (n) is true
and then use this assumption to prove that P (n + 1) is true. These two statements should
be fairly similar, but bridging the gap may require some ingenuity. Whatever argument you
give must be valid for every nonnegative integer n, since the goal is to prove the implications
P (0) → P (1), P (1) → P (2), P (2) → P (3), etc. all at once.

1.1. ORDINARY INDUCTION 7

5. Invoke induction. Given these facts, the induction principle allows you to conclude that
P (n) is true for all nonnegative n. This is the logical capstone to the whole argument, but
many writers leave this step implicit.

Explicitly labeling the base case and inductive step may make your proofs clearer.

1.1.3 A Clean Writeup

The proof of Theorem 0.1 given above is perfectly valid; however, it contains a lot of extraneous
explanation that you won’t usually see in induction proofs. The writeup below is closer to what
you might see in print and should be prepared to produce yourself.

Proof. We use induction. The induction hypothesis, P (n), will be equation (1.1).

Base case: P (0) is true, because both sides of equation (1.1) equal zero when n = 0.

Inductive step: Assume that P (n) is true, where n is any nonnegative integer. Then

1 + 2 + 3 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1) by induction hypothesis

=
(n + 1)(n + 2)

2
by simple algebra

which proves P (n + 1).

So it follows by induction that P (n) is true for all nonnegative n.

Induction was helpful for proving the correctness of this summation formula, but not helpful for
discovering it in the first place. We’ll show you some tricks for finding such formulas in a few
weeks.

1.1.4 Powers of Odd Numbers

A proof in class that n
√

2 is irrational used the “obvious”:

Fact. The nth power of an odd number is odd, for all nonnegative integers, n.

Instead of taking this fact for granted, we can prove it by induction. The proof will require a
simple Lemma.

Lemma. The product of two odd numbers is odd.

To prove the Lemma, note that the odd numbers are, by definition, the numbers of the form 2k +1
where k is an integer. But

(2k + 1)(2k′ + 1) = 2(2kk′ + k + k′) + 1,

so the product of two odd numbers also has the form of an odd number, which proves the Lemma.

8 CHAPTER 1. INDUCTION

Now we will prove the Fact using the induction hypothesis

P (n) ::= if a is an odd integer, then so is an.

The base case P (0) holds because a0 = 1, and 1 is odd.

For the inductive step, suppose n ≥ 0, a is an odd number and P (n) holds. So an is an odd
number. Therefore, an+1 = ana is a product of odd numbers, and by the Lemma an+1 is also odd.
This proves P (n + 1), and we conclude by induction that P (n) holds for nonnegative integers n.

1.1.5 Courtyard Tiling

Induction served purely as a proof technique in the preceding examples. But induction sometimes
can serve as a more general reasoning tool.

MIT recently constructed the Stata Center which houses the Computer Science and AI Laboratory.
During development, the project went further and further over budget, and there were some
radical fundraising ideas. One rumored plan was to install a big courtyard with dimensions 2n ×
2n:

2n

2n

One of the central squares would be occupied by a statue of a wealthy potential donor. Let’s call
him “Bill”. (In the special case n = 0, the whole courtyard consists of a single central square;
otherwise, there are four central squares.) A complication was that the building’s unconventional
architect, Frank Gehry, supposedly insisted that only special L-shaped tiles be used:

A courtyard meeting these constraints exists, at least for n = 2:

B

1.1. ORDINARY INDUCTION 9

For larger values of n, is there a way to tile a 2n × 2n courtyard with L-shaped tiles and a statue in
the center? Let’s try to prove that this is so.

Theorem 1.2. For all n ≥ 0 there exists a tiling of a 2n × 2n courtyard with Bill in a central square.

Proof. (doomed attempt) The proof is by induction. Let P (n) be the proposition that there exists a
tiling of a 2n × 2n courtyard with Bill in the center.

Base case: P (0) is true because Bill fills the whole courtyard.

Inductive step: Assume that there is a tiling of a 2n× 2n courtyard with Bill in the center for some
n ≥ 0. We must prove that there is a way to tile a 2n+1 × 2n+1 courtyard with Bill in the center
. . . .

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the center isn’t much help
in tiling a larger courtyard with Bill in the center. We haven’t figured out how to bridge the gap
between P (n) and P (n + 1).

So if we’re going to prove Theorem 1.2 by induction, we’re going to need some other induction
hypothesis than simply the statement about n that we’re trying to prove.

When this happens, your first fallback should be to look for a stronger induction hypothesis; that is,
one which implies your previous hypothesis. For example, we could make P (n) the proposition
that for every location of Bill in a 2n × 2n courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: “If you can’t prove something, try to prove something grander!”
But for induction arguments, this makes sense. In the inductive step, where you have to prove
P (n) −→ P (n + 1), you’re in better shape because you can assume P (n), which is now a more
powerful statement. Let’s see how this plays out in the case of courtyard tiling.

Proof. (successful attempt) The proof is by induction. Let P (n) be the proposition that for every
location of Bill in a 2n × 2n courtyard, there exists a tiling of the remainder.

Base case: P (0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P (n) is true for some n ≥ 0; that is, for every location of Bill in a
2n×2n courtyard, there exists a tiling of the remainder. Divide the 2n+1×2n+1 courtyard into four
quadrants, each 2n × 2n. One quadrant contains Bill (B in the diagram below). Place a temporary
Bill (X in the diagram) in each of the three central squares lying outside this quadrant:

X
X X

B

2n 2n

2n

2n

10 CHAPTER 1. INDUCTION

Now we can tile each of the four quadrants by the induction assumption. Replacing the three
temporary Bills with a single L-shaped tile completes the job. This proves that P (n) implies P (n+
1) for all n ≥ 0. The theorem follows as a special case.

This proof has two nice properties. First, not only does the argument guarantee that a tiling exists,
but also it gives an algorithm for finding such a tiling. Second, we have a stronger result: if Bill
wanted a statue on the edge of the courtyard, away from the pigeons, we could accommodate
him!

Strengthening the induction hypothesis is often a good move when an induction proof won’t go
through. But keep in mind that the stronger assertion must actually be true; otherwise, there isn’t
much hope of constructing a valid proof! Sometimes finding just the right induction hypothesis
requires trial, error, and insight. For example, mathematicians spent almost twenty years trying to
prove or disprove the conjecture that “Every planar graph is 5-choosable”2. Then, in 1994, Carsten
Thomassen gave an induction proof simple enough to explain on a napkin. The key turned out to
be finding an extremely clever induction hypothesis; with that in hand, completing the argument
is easy!

1.1.6 A Faulty Induction Proof

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to reformulate it in a way
that makes an n explicit. In particular, we’ll (falsely) prove that

False Theorem 1.3. In every set of n ≥ 1 horses, all are the same color.

This a statement about all integers n ≥ 1 rather ≥ 0, so it’s natural to use a slight variation on
induction: prove P (1) in the base case and then prove that P (n) implies P (n + 1) for all n ≥ 1 in
the inductive step. This is a perfectly valid variant of induction and is not the problem with the
proof below.

False proof. The proof is by induction on n. The induction hypothesis, P (n), will be

In every set of n horses, all are the same color. (1.5)

Base case: (n = 1). P (1) is true, because in a set of horses of size 1, there’s only one horse, and this
horse is definitely the same color as itself.

Inductive step: Assume that P (n) is true for some n ≥ 1. that is, assume that in every set of n
horses, all are the same color. Now consider a set of n + 1 horses:

h1, h2, . . . , hn, hn+1

25-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-colorable and therefore
5-colorable, not every planar graph is 4-choosable. If this all sounds like nonsense, don’t panic. We’ll discuss graphs,
planarity, and coloring in two weeks.

1.1. ORDINARY INDUCTION 11

By our assumption, the first n horses are the same color:

h1, h2, . . . , hn,︸ ︷︷ ︸
same color

hn+1

Also by our assumption, the last n horses are the same color:

h1, h2, . . . , hn, hn+1︸ ︷︷ ︸
same color

So h1 is the same color as the remaining horses besides hn+1, and likewise hn+1 is the same color as
the remaining horses besides h1. So h1 and hn+1 are the same color. That is, horses h1, h2, . . . , hn+1

must all be the same color, and so P (n + 1) is true. Thus, P (n) implies P (n + 1).

By the principle of induction, P (n) is true for all n ≥ 1.

We’ve proved something false! Is Math broken? Should we all become poets? No, this proof has
a mistake.

The error in this argument is in the sentence that begins, “So h1 and hn+1 are the same color.” The
“. . . ” notation creates the impression that there are some remaining horses besides h1 and hn+1.
However, this is not true when n = 1. In that case, the first set is just h1 and the second is h2, and
there are no remaining horses besides them. So h1 and h2 need not be the same color!

This mistake knocks a critical link out of our induction argument. We proved P (1) and we cor-
rectly proved P (2) −→ P (3), P (3) −→ P (4), etc. But we failed to prove P (1) −→ P (2), and so
everything falls apart: we can not conclude that P (2), P (3), etc., are true. And, of course, these
propositions are all false; there are horses of a different color.

Students sometimes claim that the mistake in the proof is because P (n) is false for n ≥ 2, and the
proof assumes something false, namely, P (n), in order to prove P (n + 1). You should think about
how to explain to such a student why this claim would get no credit on a 6.042 exam.

1.1.7 Class Problems

Problem 2. Use induction to prove that

13 + 23 + · · ·+ n3 =
(

n(n + 1)
2

)2

. (1.6)

for all n ≥ 1.

Remember to formally

1. Declare proof by induction.

2. Identify the induction hypothesis P (n).

12 CHAPTER 1. INDUCTION

3. Establish the base case.

4. Prove that P (n) ⇒ P (n + 1).

5. Conclude that P (n) holds for all n ≥ 1.

as in the five part template.

Problem 3. (a) Prove by induction that a 2n×2n courtyard with a 1×1 statue of Bill in any position
can be covered with L-shaped tiles.

(b) (Discussion Question) In part (a) we saw that it can be easier to prove a stronger theorem. Does
this surprise you? How would you explain this phenomenon?

Problem 4. Here is another exciting 6.042 game that’s surely about to sweep the nation!

You begin with a stack of n boxes. Then you make a sequence of moves. In each move, you
divide one stack of boxes into two nonempty stacks. The game ends when you have n stacks, each
containing a single box. You earn points for each move; in particular, if you divide one stack of
height a + b into two stacks with heights a and b, then you score ab points for that move. Your
overall score is the sum of the points that you earn for each move. What strategy should you use
to maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the game might proceed
as follows:

Stack Heights Score
10
5 5 25 points
5 3 2 6
4 3 2 1 4
2 3 2 1 2 4
2 2 2 1 2 1 2
1 2 2 1 2 1 1 1
1 1 2 1 2 1 1 1 1
1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

Total Score = 45 points

On each line, the underlined stack is divided in the next step.

(a) Can you find a better strategy? Experiment with a few strategies, and before looking at the
next page, see if your team can guess what’s going on.

(b) As you may have guessed, the strategy is irrelevant: the score is determined solely by the
number of boxes. Confirm this using strong induction to prove that the predicate

S(n) ::= every way of unstacking n + 1 blocks gives a score of (n + 1)n/2

holds for all n ∈ N.

1.1. ORDINARY INDUCTION 13

Problem 5. Week 4 Notes contain a proof by induction that:

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

But now we’re going to prove a contradictory theorem!

False Theorem. For all n ≥ 0,

2 + 3 + 4 + · · ·+ n =
n(n + 1)

2

Proof. We use induction. Let P (n) be the proposition that 2 + 3 + 4 + · · ·+ n = n(n + 1)/2.

Base case: P (0) is true, since both sides of the equation are equal to zero. (Recall that a sum with
no terms is zero.)

Inductive step: Now we must show that P (n) implies P (n + 1) for all n ≥ 0. So suppose that P (n)
is true; that is, 2 + 3 + 4 + · · ·+ n = n(n + 1)/2. Then we can reason as follows:

2 + 3 + 4 + · · ·+ n + (n + 1) =
[
2 + 3 + 4 + · · ·+ n

]
+ (n + 1)

=
n(n + 1)

2
+ (n + 1)

=
(n + 1)(n + 2)

2

Above, we group some terms, use the assumption P (n), and then simplify. This shows that P (n)
implies P (n + 1). By the principle of induction, P (n) is true for all n ∈ N.

Where exactly is the error in this proof?

http://theory.csail.mit.edu/classes/6.042/spring09/ln4.pdf

14 CHAPTER 1. INDUCTION

1.2 Strong Induction

1.2.1 The Strong Induction Principle

A useful variant of induction is called strong induction. Strong Induction and Ordinary Induction
are used for exactly the same thing: proving that a predicate P (n) is true for all n ∈ N.

Principle of Strong Induction. Let P (n) be a predicate. If

• P (0) is true, and

• for all n ∈ N, P (0), P (1), . . . , P (n) together imply P (n + 1),

then P (n) is true for all n ∈ N.

The only change from the ordinary induction principle is that strong induction allows you to
assume more stuff in the inductive step of your proof! In an ordinary induction argument, you
assume that P (n) is true and try to prove that P (n+1) is also true. In a strong induction argument,
you may assume that P (0), P (1), . . . , and P (n) are all true when you go to prove P (n + 1). These
extra assumptions can only make your job easier.

1.2.2 Products of Primes

As a first example, we’ll use strong induction to prove one of those familiar facts that is almost,
but maybe not entirely, obvious:

Lemma 5.1. Every integer greater than 1 is a product of primes.

Note that, by convention, any number is considered to be a product consisting of one term, namely
itself. In particular, every prime is considered to be a product whose terms are all primes.

Proof. We will prove Lemma 5.1 by strong induction, letting the induction hypothesis, P (n), be

n + 2 is a product of primes.

So Lemma 5.1 will follow if we prove that P (n) holds for all n ≥ 0.

Base Case: P (0) is true because 0 + 2 is prime, and so is a product of primes by convention.

Inductive step: Suppose that n ≥ 0 and that i + 2 is a product of primes for every nonnegative
integer i < n+1. We must show that P (n+1) holds, namely, that n+3 is also a product of primes.
We argue by cases:

If n + 3 is itself prime, then it is a product of primes by convention, so P (n + 1) holds in this case.

Otherwise, n + 3 is not prime, which by definition means n + 3 = km for some integers k, m such
that 2 ≤ k, m < n + 3. Now 0 ≤ k − 2 < n + 1, so by strong induction hypothesis, we know that

1.2. STRONG INDUCTION 15

(k − 2) + 2 = k is a product of primes. Likewise, m is a product of primes. it follows immediately
that km = n + 3 is also a product of primes. Therefore, P (n + 1) holds in this case as well.

So P (n + 1) holds in any case, which completes the proof by strong induction that P (n) holds for
all nonnegative integers, n.

Despite the name, strong induction is actually no more powerful than ordinary induction: any
theorem that can be proved with strong induction could also be proved with ordinary induction
(using a slightly more complicated induction hypothesis). But strong induction can make some
proofs a bit easier. On the other hand, if P (n) is easily sufficient to prove P (n + 1), then it’s better
to use ordinary induction for simplicity.

1.2.3 Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg (3 Strongs) and
5Sg. Although the Inductians have some trouble making small change like 4Sg or 7Sg, it turns out
that they can collect coins to make change for any number at least 8 Strongs.

Strong induction makes this easy to prove for n+1 ≥ 11, because then (n+1)−3 ≥ 8, so by strong
induction the Inductians can make change for exactly (n + 1) − 3 Strongs, and then they can add
a 3Sg coin to get (n + 1)Sg). So the only thing to do is check that they can make change for all the
amounts from 8 to 10Sg, which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any amount of at
least 8Sg. The induction hypothesis, P (n) will be:

If n ≥ 8, then there is a collection of coins whose value is n Strongs.

Notice that P (n) is an implication. When the hypothesis of an implication is false, we know the
whole implication is true. In this situation, the implication is said to be vacuously true. So P (n)
will be vacuously true whenever n < 8.3

We now proceed with the induction proof:

Base case: P (0) is vacuously true.

Inductive step: We assume P (i) holds for all i ≤ n, and prove that P (n + 1) holds. We argue by
cases:

Case (n + 1 < 8): P (n + 1) is vacuously true in this case.

Case (n + 1 = 8): P (8) holds because the Inductians can use one 3Sg coin and one fiveSg coins.

Case (n + 1 = 9): Use a three 3Sg coins.

3Another approach that avoids these vacuous cases is to define

P ′(n) ::= there is a collection of coins whose value is n + 8 Strongs

and prove that P ′(n) holds for all n ≥ 0.

16 CHAPTER 1. INDUCTION

Case (n + 1 = 10): Use two 5Sg coins.

Case (n + 1 ≥ 11): Then n ≥ (n + 1)− 3 ≥ 8, so by the strong induction hypothesis, the Inductians
can make change for (n + 1) − 3 Strong. Now by adding a 3Sg coin, they can make change for
(n + 1)Sg.

So in any case, P (n + 1) is true, and we conclude by strong induction that for all n ≥ 8, the
Inductians can make change for n Strong.

1.2.4 Unstacking

Here is another exciting 6.042 game that’s surely about to sweep the nation!

You begin with a stack of n boxes. Then you make a sequence of moves. In each move, you
divide one stack of boxes into two nonempty stacks. The game ends when you have n stacks, each
containing a single box. You earn points for each move; in particular, if you divide one stack of
height a + b into two stacks with heights a and b, then you score ab points for that move. Your
overall score is the sum of the points that you earn for each move. What strategy should you use
to maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the game might proceed
as follows:

Stack Heights Score
10
5 5 25 points
5 3 2 6
4 3 2 1 4
2 3 2 1 2 4
2 2 2 1 2 1 2
1 2 2 1 2 1 1 1
1 1 2 1 2 1 1 1 1
1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

Total Score = 45 points

On each line, the underlined stack is divided in the next step. Can you find a better strategy?

Analyzing the Game

Let’s use strong induction to analyze the unstacking game. We’ll prove that your score is deter-
mined entirely by the number of boxes —your strategy is irrelevant!

Theorem 5.2. Every way of unstacking n blocks gives a score of n(n− 1)/2 points.

There are a couple technical points to notice in the proof:

• The template for a strong induction proof is exactly the same as for ordinary induction.

1.2. STRONG INDUCTION 17

• As with ordinary induction, we have some freedom to adjust indices. In this case, we prove
P (1) in the base case and prove that P (1), . . . , P (n) imply P (n + 1) for all n ≥ 1 in the
inductive step.

Proof. The proof is by strong induction. Let P (n) be the proposition that every way of unstacking
n blocks gives a score of n(n− 1)/2.

Base case: If n = 1, then there is only one block. No moves are possible, and so the total score for
the game is 1(1− 1)/2 = 0. Therefore, P (1) is true.

Inductive step: Now we must show that P (1), . . . , P (n) imply P (n + 1) for all n ≥ 1. So assume
that P (1), . . . , P (n) are all true and that we have a stack of n + 1 blocks. The first move must split
this stack into substacks with positive sizes a and b where a + b = n + 1 and 0 < a, b ≤ n. Now the
total score for the game is the sum of points for this first move plus points obtained by unstacking
the two resulting substacks:

total score = (score for 1st move)
+ (score for unstacking a blocks)
+ (score for unstacking b blocks)

= ab +
a(a− 1)

2
+

b(b− 1)
2

by P (a) and P (b)

=
(a + b)2 − (a + b)

2
=

(a + b)((a + b)− 1)
2

=
(n + 1)n

2

This shows that P (1), P (2), . . . , P (n) imply P (n + 1).

Therefore, the claim is true by strong induction.

Problem 6. Define the potential, p(S), of a stack, S, of blocks to be k(k+1)/2 where k is the number
of blocks in S. Define the potential, p(A), of a set, A, of stacks to be the sum of the potentials of the
stacks in A.

Generalize Theorem 5.2 to show that for any set, A, of stacks, if a sequence of moves starting with
A leads to another set, B, of stacks, then the score for this sequence of moves is p(A)− p(B).

1.2.5 Class Problems

18 CHAPTER 1. INDUCTION

1.3 Induction versus Well Ordering

The induction axiom looks nothing like the Well Ordering Principle, but these two proof methods
are closely related. In fact, we can take any Induction proof and reformat it into a Well Ordering
proof.

Here’s how: suppose that we have a proof by Induction with induction hypothesis P (n). Then we
start a Well Ordering proof by assuming the set of counterexamples to P is nonempty. Then by
Well Ordering there is a smallest counterexample, s, that is, a smallest s such that P (s) is false.

Now we use the proof of P (0) that was part of the Induction proof to conclude that s must be
greater than 0. Also since s is the smallest counterexample, we can conclude that P (s− 1) must be
true. At this point we reuse the proof of the inductive step in the Induction proof, which shows
that since P (s − 1) true, then P (s) is also true. This contradicts the assumption that P (s) is false,
so we have the contradiction needed to complete the Well Ordering Proof that P (n) holds for all
n ∈ N.

Problem 7. Conversely, use Strong Induction to prove the Well Ordering Principle. Hint: Prove
that if a set of nonnegative integers contains an integer, n, then it has a smallest element.

Mathematicians commonly use the Well Ordering Principle because it can lead to shorter proofs
than induction. On the other hand, well ordering proofs typically involve proof by contradiction,
so using it is not always the best approach. The choice of method is really a matter of style—but
style does matter.

1.3.1 Class Problems

1.4. STRUCTURAL INDUCTION 19

1.4 Structural Induction

1.4.1 Recursive Data Types

Recursive data types play a central role in programming. From a Mathematical point of view, re-
cursive data types are what induction is about. Recursive data types are specified by recursive
definitions that say how to build something from its parts. These definitions have two parts:

• Base case(s) that don’t depend on anything else.

• Constructor case(s) that depend on previous cases.

1.4.2 Strings of Parentheses

Let prns be the set of all strings of parentheses. For example, the following two strings are in prns:

())((((()) and ((())())() (1.7)

Since we’re just starting to study recursive data, just for practice we’ll formulate prns as a recursive
data type,

Definition 7.1. The data type, prns, of strings of parentheses is defined recursively:

• Base case: The empty string, λ, is in prns.

• Constructor case: If s ∈ prns, then s) and s(are in prns.

Here we’re writing s) to indicate the string that is sequence of parentheses (if any) in the string s,
followed by a right parenthesis; similarly for s(.

A string, s ∈ prns, a called a matched string if its parentheses “match up” in the usual way. For
example, the left hand string above is not matched because its second right parenthesis does not
have a matching left parenthesis. The string on the right is matched.

One precise way to determine if a string is matched is to start with 0 and read the string from left
to right, adding 1 to the count for each left parenthesis and subtracting 1 from the count for each
right parenthesis. For example, here are the counts for the two strings above

()) ((((())))
0 1 0 −1 0 1 2 3 4 3 2 1 0

((()) ()) ()
0 1 2 3 2 1 2 1 0 1 0

A string has a good count if its running count never goes negative and ends with 0. So the second
string above has a good count, but the first one does not because its count went negative at the
third step.

20 CHAPTER 1. INDUCTION

Definition 7.2. Let
GoodCount ::= {s ∈ prns | s has a good count} .

The matched strings can now be characterized precisely as this set of strings with good counts.
But it turns out to be really useful to characterize the matched strings in another way as well,
namely, as a recursive data type:

Definition 7.3. Recursively define the set, RecMatch, of strings as follows:

• Base case: λ ∈ RecMatch.

• Constructor case: If s, t ∈ RecMatch, then

(s)t ∈ RecMatch .

Here we’re writing (s)t to indicate the string that starts with a left parenthesis, followed by the
sequence of parentheses (if any) in the string s, followed by a right parenthesis, and ending with
the sequence of parentheses in the string t.

Using this definition, we can see that λ ∈ RecMatch by the Base case, so

(λ)λ = () ∈ RecMatch

by the Constructor case. So now,

(λ)() = ()() ∈ RecMatch (letting s = λ, t = ())
(())λ = (()) ∈ RecMatch (letting s = (), t = λ)

(())() ∈ RecMatch (letting s = (), t = ())

are also strings in RecMatch by repeated applications of the Constructor case.

Quickie: Verify that ((())())() ∈ RecMatch.

It may not be obvious, but RecMatch = GoodCount. We’ll confirm this later.

1.4.3 Arithmetic Expressions

Expression evaluation is a key feature of programming languages, and recognition of expressions
as a recursive data type is a key to understanding how they can be processed.

To illustrate this approach we’ll work with a toy example: arithmetic expressions like 3x2 +2x+1
involving only one variable, “x.” We’ll refer to the data type of such expressions as Aexp. Here is
its definition:

Definition 7.4. The set, Aexp, of Arithmetic expressions in the variable, x, is defined recursively as
follows:

• Base cases:

1. The variable, x, is in Aexp.

1.4. STRUCTURAL INDUCTION 21

2. The arabic numeral, k, for any nonnegative integer, k, is in Aexp.

• Constructor cases: If e, f ∈ Aexp, then

3. (e + f) ∈ Aexp. The expression (e + f) is called a sum. The Aexp’s e and f are called
the components of the sum; they’re also called the summands.

4. (e ∗ f) ∈ Aexp. The expression (e ∗ f) is called a product. The Aexp’s e and f are called
the components of the product; they’re also called the multiplier and multiplicand.

5. −−(e) ∈ Aexp. The expression −−(e) is called a negative.

Notice that Aexp’s are fully parenthesized, and exponents aren’t allowed. So the Aexp version of
the polynomial expression 3x2 + 2x + 1 would officially be written as

((3 ∗ (x ∗ x)) + ((2 ∗ x) + 1)). (1.8)

These parentheses and ∗’s clutter up examples, so we’ll often use simpler expressions like “3x2 +
2x + 1” instead of (1.8). But it’s important to recognize that 3x2 + 2x + 1 is not an Aexp; it’s an
abbreviation for an Aexp.

1.4.4 The Nonnegative Integers

The nonnegative integers can be understood as a recursive data type.

Definition 7.5. The set, N, is a data type defined recursivly as:

• 0 ∈ N.

• If n ∈ N, then the successor, n + 1, of n is in N.

1.4.5 Structural Induction on Recursive Data Types

Structural induction is a method for proving some property, P , of all the elements of a recursively-
defined data type. The proof consists of two steps:

• Prove P for the base cases of the definition.

• Prove P for the constructor cases of the definition, assuming that it is true for the component
data items.

A very simple application of structural induction proves that the recursively defined matched
strings always have an equal number of left and right parentheses. To do this, define a predicate,
P , on strings s ∈ prns:

P (s) ::= s has an equal number of left and right parentheses.

22 CHAPTER 1. INDUCTION

Proof. We’ll prove that P (s) holds for all s ∈ RecMatch by structural induction on the definition
that s ∈ RecMatch, using P (s) as the induction hypothesis.

Base case: P (λ) holds because the empty string has zero left and zero right parentheses.

Constructor case: For r = (s)t, we must show that P (r) holds, given that P (s) and P (t) holds.
So let ns, nt be, respectively, the number of left parentheses in s and t. So the number of left
parentheses in r is 1 + ns + nt.

Now from the respective hypotheses P (s) and P (t), we know that the number of right parenthe-
ses in s is ns, and likewise, the number of right parentheses in t is nt. So the number of right
parentheses in r is 1 + ns + nt, which is the same as the number of left parentheses. This proves
P (r). We conclude by structural induction that P (s) holds for all s ∈ RecMatch.

Problem 8. (a) Give an easy proof using structural induction that every recursively defined match
string has a good count. That is

RecMatch ⊆ GoodCount .

(b) Conversely, prove by induction on the length of strings that the every string with a good
count has a recursive definition, that is,

GoodCount ⊆ RecMatch .

By the way, you should notice that ordinary induction is simply the special case of structural
induction on the recursive Definition 7.5 of N!

1.4.6 Functions on Recursively-defined Data Types

Functions on recursively-defined data types can be defined recursively using the same cases as the
data type definition. Namely, to define a function, f , on a recursive data type, define the value of
f for the base cases of the data type definition, and then define the value of f in each constructor
case in terms of the values of f on the component data items.

For example, from the recursive definition of the set, RecMatch, of strings of matched parentheses,
we define:

Definition 8.6. The depth, d(s), of a string, s ∈ RecMatch, is defined recursively by the rules:

• d(λ) ::= 0.

• d((s)t) ::= max {d(s) + 1, d(t)}

Warning: When a recursive definition of a data type allows the same element to be
constructed in more than one way, the definition is said to be ambiguous. A function defined
recursively from an ambiguous definition of a data type will not be well-defined unless the
values specified for the different ways of constructing the element agree.

1.4. STRUCTURAL INDUCTION 23

We were careful to choose an unambiguous definition of RecMatch to ensure that functions de-
fined recursively on the definition would always be well-defined. As an example of the trouble an
ambiguous definition can cause, let’s consider yet another definition of the matched strings.

Example 8.7. Define the set, M ⊆ prns recursively as follows:

• Base case: λ ∈ M ,

• Constructor cases: if s, t ∈ M , then the strings (s) and st are also in M .

Problem 9. Give an easy proof by structural induction that M = RecMatch.

Since M = RecMatch, and the definition of M seems more straightforward, why didn’t we use it?
Because the definition of M is ambiguous, while the trickier definition of RecMatch is unambigu-
ous. Does this ambiguity matter? Yes it does. For suppose we defined

f(λ) ::= 1,

f((s)) ::= 1 + f(s),
f(st) ::= (f(s) + 1) · (f(t) + 1) for st 6= λ.

Let a be the string (()) ∈ M built by two successive applications of the first M constructor start-
ing with λ. Next let b ::= aa and c ::= bb, each built by successive applications of the second M
constructor starting with a.

Alternatively, we can build ba from the second constructor with s = b and t = a, and then get to c
using the second constructor with s = ba and t = a.

Now by these rules, f(a) = 2, and f(b) = (2 + 1)(2 + 1) = 9. This means that f(c) = f(bb) =
(9 + 1)(9 + 1) = 100.

But also f(ba) = (9 + 1)(2 + 1) = 27, so that f(c) = f(ba a) = (27 + 1)(2 + 1) = 84.

The outcome is that f(c) is defined to be both 100 and 84, which shows that the rules defining f
are inconsistent.

On the other hand, structural induction remains a sound proof method even for ambiguous recur-
sive definitions, which is why it was easy to prove that M = RecMatch.

1.4.7 Recursive Functions on Nonnegative Integers

Definition 7.5 of the nonnegative integers as a recursive data type justifies the familiar recursive
definitions of functions on the nonnegative integers. Here are some examples.

The Factorial function. This function is often written “n!.” You will see a lot of it later in the term.
Here we’ll use the notation fac(n):

• fac(0) ::= 1.

• fac(n + 1) ::= (n + 1) · fac(n) for n ≥ 0.

24 CHAPTER 1. INDUCTION

The Fibonacci numbers. Fibonacci numbers arose out of an effort 800 years ago to model popu-
lation growth. They have a continuing fan club of people captivated by their extraordinary
properties. The nth Fibonacci number, fib, can be defined recursively by:

fib(0) ::= 0,

fib(1) ::= 1,

fib(n) ::= fib(n− 1) + fib(n− 2) for n ≥ 2.

Here the recursive step starts at n = 2 with base cases for 0 and 1. This is needed since the
recursion relies on two previous values.

Sum-notation. Let “S(n)” abbreviate the expression “
∑n

i=1 f(i).” We can recursively define S(n)
with the rules

• S(0) ::= 0.
• S(n + 1) ::= f(n + 1) + S(n) for n ≥ 0.

Ill-formed Function Definitions

There are some blunders to watch out for when defining functions recursively. Below are some
function specifications that resemble good definitions of functions on the nonnegative integers,
but they aren’t.

f1(n) ::= 2 + f1(n− 1). (1.9)

This “definition” has no base case. If some function, f1, satisfied (1.9), so would a function ob-
tained by adding a constant to the value of f1. So equation (1.9) does not uniquely define an
f1.

f2(n) ::=

{
0, if n = 0,

f2(n + 1) otherwise.
(1.10)

This “definition” has a base case, but still doesn’t uniquely determine f2. Any function that is 0
at 0 and constant everywhere else would satisfy the specification, so (1.10) also does not uniquely
define anything.

In a typical programming language, evaluation of f2(1) would begin with a recursive call of f2(2),
which would lead to a recursive call of f2(3), . . . with recursive calls continuing without end.
This “operational” approach interprets (1.10) as defining a partial function, f2, that is undefined
everywhere but 0.

f3(n) ::=

0, if n is divisible by 2,
1, if n is divisible by 3,
2, otherwise.

(1.11)

This “definition” is inconsistent: it requires f3(6) = 0 and f3(6) = 1, so (1.11) doesn’t define
anything.

1.4. STRUCTURAL INDUCTION 25

A Mysterious Function

Mathematicians have been wondering about this function specification for a while:

f4(n) ::=

1, if n ≤ 1,

f4(n/2) if n > 1 is even,

f4(3n + 1) if n > 1 is odd.

(1.12)

For example, f4(3) = 1 because

f4(3) ::= f4(10) ::= f4(5) ::= f4(16) ::= f4(8) ::= f4(4) ::= f4(2) ::= f4(1) ::= 1.

The constant function equal to 1 will satisfy (1.12), but it’s not known if another function does too.
The problem is that the third case specifies f4(n) in terms of f4 at arguments larger than n, and so
cannot be justified by induction on N. It’s known that any f4 satisfying (1.12) equals 1 for all n up
to over a billion.

Quick exercise: Why does the constant function 1 satisfy (1.12)?

1.4.8 Evaluation and Substitution with Aexp’s

Evaluating Aexp’s

Since the only variable in an Aexp is x, the value of an Aexp is determined by the value of x. For
example, if the value of x is 3, then the value of 3x2 + 2x + 1 is obviously 34. In general, given any
Aexp, e, and an integer value, n, for the variable, x, we can evaluate e to finds its value, eval(e, n).
It’s easy, and useful, to specify this evaluation process with a recursive definition.

Definition 9.8. The evaluation function, eval : Aexp×Z → Z, is defined recursively on expressions,
e ∈ Aexp, as follows. Let n be any integer.

• Base cases:

1. Case[e is x]
eval(x, n) ::= n.

(The value of the variable, x, is given to be n.)

2. Case[e is k]
eval(k, n) ::= k.

(The value of the numeral k is the integer k, no matter what value x has.)

• Constructor cases:

3. Case[e is (e1 + e2)]

eval((e1 + e2), n) ::= eval(e1, n) + eval(e2, n).

26 CHAPTER 1. INDUCTION

4. Case[e is (e1 ∗ e2)]

eval((e1 ∗ e2), n) ::= eval(e1, n) · eval(e2, n).

5. Case[e is −−(e1)]
eval(−−(e1), n) ::=− eval(e1, n).

For example, here’s how the recursive definition of eval would arrive at the value of 3 + x2 when
x is 2:

eval((3 + (x ∗ x)), 2) = eval(3, 2) + eval((x ∗ x), 2) (by Def 9.8.3)
= 3 + eval((x ∗ x), 2) (by Def 9.8.2)
= 3 + (eval(x, 2) · eval(x, 2)) (by Def 9.8.4)
= 3 + (2 · 2) (by Def 9.8.1)
= 3 + 4 = 7.

Substituting into Aexp’s

Substituting expressions for variables is a standard, important operation. For example the result
of substituting the expression 3x for x in the (x(x−1)) would be (3x(3x−1). We’ll use the general
notation subst(f, e) for the the result of substituting an Aexp, f , for each of the x’s in an Aexp, e.
For instance,

subst(3x, x(x− 1)) = 3x(3x− 1).

This substitution function has a simple recursive definition:

Definition 9.9. The substitution function from Aexp × Aexp to Aexp is defined recursively on ex-
pressions, e ∈ Aexp, as follows. Let f be any Aexp.

• Base cases:

1. Case[e is x]
subst(f, x) ::= f.

(The result of substituting f for the variable, x, is just f .)

2. Case[e is k]
subst(f, k) ::= k.

(The numeral, k, has no x’s in it to substitute for.)

• Constructor cases:

3. Case[e is (e1 + e2)]

subst(f, (e1 + e2))) ::= (subst(f, e1) + subst(f, e2)).

4. Case[e is (e1 ∗ e2)]

subst(f, (e1 ∗ e2))) ::= (subst(f, e1) ∗ subst(f, e2)).

1.4. STRUCTURAL INDUCTION 27

5. Case[e is −−(e1)]
subst(f,−−(e1)) ::=−−(subst(f, e1)).

Here’s how the recursive definition of the substitution function would find the result of substitut-
ing 3x for x in the x(x− 1):

subst(3x, (x(x− 1))) = subst(3x, (x ∗ (x +−−(1)))) (unabbreviating)
= (subst(3x, x) ∗ subst(3x, (x +−−(1)))) (by Def 9.9 4)
= (3x ∗ subst(3x, (x +−−(1)))) (by Def 9.9 1)
= (3x ∗ (subst(3x, x) + subst(3x,−−(1)))) (by Def 9.9 3)
= (3x ∗ (3x +−−(subst(3x, 1)))) (by Def 9.9 1 & 5)
= (3x ∗ (3x +−−(1))) (by Def 9.9 2)
= 3x(3x− 1) (abbreviation)

Now suppose we have to find the value of subst(3x, (x(x − 1))) when x = 2. There are two
approaches.

First, we could actually do the substitution above to get 3x(3x − 1), and then we could evaluate
3x(3x − 1) when x = 2, that is, we could recursively calculate eval(3x(3x − 1), 2) to get the final
value 30. In programming jargon, this would be called evaluation using the Substitution Model.
Tracing through the steps in the evaluation, we find that the Substitution Model requires two
substitutions for occurrences of x and 5 integer operations: 3 integer multiplications, 1 integer
addition, and 1 integer negative operation. Note that in this Substitution Model the multiplication
3 · 2 was performed twice to get the value of 6 for each of the two occurrences of 3x.

The other approach is called evaluation using the Environment Model. Namely, we evaluate 3x
when x = 2 using just 1 multiplication to get the value 6. Then we evaluate x(x − 1) when x has
this value 6 to arrive at the value 6 ·5 = 30. So the Environment Model requires 2 variable lookups
and only 4 integer operations: 1 multiplication to find the value of 3x, another multiplication to
find the value 6 · 5, along with 1 integer addition and 1 integer negative operation.

So the Environment Model approach of calculating

eval(x(x− 1), eval(3x, 2))

instead of the Substitution Model approach of calculating

eval(subst(3x, x(x− 1)), 2)

is faster. But how do we know that these final values reached by these two approaches always
agree? We can prove this easily by structural induction on the definitions of the two approaches.
More precisely, what we want to prove is

Theorem 9.10. For all expressions e, f ∈ Aexp and n ∈ Z,

eval(subst(f, e), n) = eval(e, eval(f, n)). (1.13)

Proof. The proof is by structural induction on e.4

Base cases:
4This is an example of why it’s useful to notify the reader what the induction variable is —in this case it isn’t n.

28 CHAPTER 1. INDUCTION

• Case[e is x]

The left hand side of equation (1.13) equals eval(f, n) by this base case in Definition 9.9 of
the substitution function, and the right hand side also equals eval(f, n) by this base case in
Definition 9.8 of eval.

• Case[e is k].

The left hand side of equation (1.13) equals k by this base case in Definitions 9.9 and 9.8 of
the substitution and evaluation functions. Likewise, the right hand side equals k by two
applications of this base case in the Definition 9.8 of eval.

Constructor cases:

• Case[e is (e1 + e2)]

By the structural induction hypothesis (1.13), we may assume that for all f ∈ Aexp and
n ∈ Z,

eval(subst(f, ei), n) = eval(ei, eval(f, n)) (1.14)

for i = 1, 2. We wish to prove that

eval(subst(f, (e1 + e2)), n) = eval((e1 + e2), eval(f, n)) (1.15)

But the left hand side of (1.15) equals

eval((subst(f, e1) + subst(f, e2)), n)

by Definition 9.9.3 of substitution into a sum expression. But this equals

eval(subst(f, e1), n) + eval(subst(f, e2), n)

by Definition 9.8.3 of eval for a sum expression. By induction hypothesis (1.14), this in turn
equals

eval(e1, eval(f, n)) + eval(e2, eval(f, n)).

Finally, this last expression equals the right hand side of (1.15) by Definition 9.8.3 of eval for
a sum expression. This proves (1.15) in this case.

• e is (e1 ∗ e2). Similar.

• e is −(e1). Even easier.

This covers all the constructor cases, and so completes the proof by structural induction.

1.5. INDUCTION IN COMPUTER SCIENCE 29

1.5 Induction in Computer Science

Induction is a powerful and widely applicable proof technique, which is why we’ve devoted this
entire set of Notes to it. Ordinary induction is specially helpful in the study of computation.
Why? Well, ordinary induction on nonnegative integers is a “one step at a time” proof method.
Computations also evolve “one step at a time.” Structural induction then goes beyond natural
number counting and offers a powerful handle on recursive computation.

In fact, structural induction is theoretically more powerful than ordinary induction. However, it’s
only more powerful when it comes to reasoning about infinite data types —like infinite trees, for
example —so this greater power doesn’t matter in practice. What does matter is that for recur-
sively defined data types, structural induction is a simple and natural approach. It is a technique
every Computer Scientist should embrace.

1.6 Games as a Recursive Data Type, from Spring ’08

Chess, Checkers, and Tic-Tac-Toe are examples of two-person terminating games of perfect information,
—2PTG’s for short. These are games in which two players alternate moves that depend only on the
visible board position or state of the game. “Perfect information” means that the players know the
complete state of the game at each move. (Most card games are not games of perfect information
because neither player can see the other’s hand.) “Terminating” means that play cannot go on
forever —it must end after a finite number of moves.5

We will define 2PTG’s as a recursive data type. To see how this will work, let’s use the game of
Tic-Tac-Toe as an example.

1.6.1 Tic-Tac-Toe

Tic-Tac-Toe is a game for young children. There are two players who alternately write the letters
“X” and “O” in the empty boxes of a 3 × 3 grid. Three copies of the same letter filling a row,
column, or diagonal of the grid is called a tic-tac-toe, and the first player who gets a tic-tac-toe of
their letter wins the game.

We’re now going give a precise mathematical definition of the Tic-Tac-Toe game tree as a recursive
data type. Here’s the idea behind the definition: at any point in the game, the “board position” is
the pattern of X’s and O’s on the 3×3 grid. From any such Tic-Tac-Toe pattern, there are a number
of next patterns that might result from a move. For example, from the initial empty grid, there
are nine possible next patterns, each with a single X in some grid cell and the other eight cells
empty. From any of these patterns, there are eight possible next patterns gotten by placing an O
in an empty cell. These move possibilities are given by the game tree for Tic-Tac-Toe indicated in
Figure 1.1.

Definition 9.1. A Tic-Tac-Toe pattern is a 3× 3 grid each of whose 9 cells contains either the single
letter, X, the single letter, O, or is empty.

5Since board positions can repeat in chess and checkers, termination is enforced by rules that prevent any position
from being repeated more than a fixed number of times. So the “state” of these games is the board position plus a record
of how many times positions have been reached.

30 CHAPTER 1. INDUCTION

X XX X X

X X

X X X

X

X O
…

X O X O
…

O O

O X XX

Figure 1.1: The Top of the Game Tree for Tic-Tac-Toe.

1.6. GAMES AS A RECURSIVE DATA TYPE, FROM SPRING ’08 31

A pattern, Q, is a possible next pattern after P , providing P has no tic-tac-toes and

• if P has an equal number of X’s and O’s, and Q is the same as P except that a cell that was
empty in P has an X in Q, or

• if P has one more X than O’s, and Q is the same as P except that a cell that was empty in P
has an O in Q.

If P is a Tic-Tac-Toe pattern, and P has no next patterns, then the terminated Tic-Tac-Toe game trees
at P are

•
〈P, 〈win〉〉 ,

if P has a tic-tac-toe of X’s.

•
〈P, 〈lose〉〉 ,

if P has a tic-tac-toe of O’s.

•
〈P, 〈tie〉〉 ,

otherwise.

The Tic-Tac-Toe game trees starting at P are defined recursively:

Base Case: A terminated Tic-Tac-Toe game tree at P is a Tic-Tac-Toe game tree starting at P .

Constructor case: If P is a non-terminated Tic-Tac-Toe pattern, then the Tic-Tac-Toe game tree
starting at P consists of P and the set of all games trees starting at possible next patterns after P .

For example, if

P0 =
O X O

X O X

X

Q1 =
O X O

X O X

X O

Q2 =
O X O

X O X

X O

R =
O X O

X O X

X O X

the game tree starting at P0 is pictured in Figure 1.2.

32 CHAPTER 1. INDUCTION

O

X

X X

XO

O

O

X

OO XO O
X O

X X

O

O

O

<lose> XO

O

X

X

X

X

OXO

X

O

X

XO

O

O X

<tie>

X

X

Figure 1.2: Game Tree for the Tic-Tac-Toe game starting at P0.

Game trees are usually pictured in this way with the starting pattern (referred to as the “root” of
the tree) at the top and lines connecting the root to the game trees that start at each possible next
pattern. The “leaves” at the bottom of the tree (trees grow upside down in Computer Science)
correspond to terminated games. A path from the root to a leaf describes a complete play of the
game. (In English, “game” can be used in two senses: first we can say that Chess is a game, and
second we can play a game of Chess. The first usage refers to the data type of Chess game trees,
and the second usage refers to a “play.”)

1.6.2 Infinite Tic-Tac-Toe Games

At any point in a Tic-Tac-Toe game, there are at most nine possible next patterns, and no play can
continue for more than nine moves. But suppose we consider an n-game Tic-Tac-Toe tournament
where the tournament winner is the one who wins more of n > 0 individual Tic-Tac-Toe games.
(If they each win an equal number of individual games, then the tournament is a tie.)

Now we can consolidate all these tournaments into a single game we can call Tournament-Tic-Tac-
Toe: the first player in Tournament-Tic-Tac-Toe chooses any integer n > 0, and then the players
play an n-game tournament. Now there are infinitely many possible first moves: the first player
can choose n = 1, or n = 2, or n = 3, or But still, it’s obvious that every possible play of
Tournament-Tic-Tac-Toe is finite, because after the first player chooses a value for n, the game
can’t continue for more than 9n moves. So it’s not possible to keep playing forever even though
the game tree is infinite.

1.6. GAMES AS A RECURSIVE DATA TYPE, FROM SPRING ’08 33

This isn’t very hard to understand, but there is an important difference between any given n-
game tournament and Tournament-Tic-Tac-Toe: even though every play of Tournament-Tic-Tac-
Toe must come to an end, there is no longer any bound on how many moves it might be before
the game ends —a play might end after 9 moves, or 9(2001) moves, or 9(1010 + 1) moves; it just
can’t continue forever.

With Tournament-Tic-Tac-Toe recognized as a 2PTG, we can go on to Tournament2-Tic-Tac-Toe
where the first player chooses a number, m > 0, of Tournament-Tic-Tac-Toe games to play, and the
second player acts as the first player in each of the m Tournament-Tic-Tac-Toe games to be played.
Then, of course, there’s Tournament3-Tic-Tac-Toe. . . .

1.6.3 Two Person Terminating Games

Familiar games like Tic-Tac-Toe, Checkers, and Chess can all end in ties, but for simplicity we’ll
only consider win/lose games —no “everybody wins”-type games at MIT. :-). But everything
we show about win/lose games will extend easily to games with ties.

Like Tic-Tac-Toe, the idea behind the definition of 2PTG’s as a recursive data type is that making
a move in a 2PTG leads to the start of a subgame. For Tic-Tac-Toe, we used the patterns and the
rules of Tic-Tac-Toe to determine the next patterns. But once we have a complete game tree, we
don’t really need the pattern labels: the root of a game tree itself can play the role of a “board
position” with its possible “next positions” determined by the roots of its subtrees. This leads to
the following very simple —perhaps deceptively simple —general definition.

Definition 9.2. The 2PTG, game trees for two-person terminating games of perfect information are de-
fined recursively as follows:

• Base cases:
〈leaf,win〉 ∈ 2PTG, and
〈leaf,lose〉 ∈ 2PTG.

• Constructor case: If G is a nonempty set of 2PTG’s, then G is a 2PTG, where

G ::= 〈tree,G〉 .

The games trees in G are called the possible next moves from G.

These games are called “terminating” because, even though a 2PTG may be a (very) infinite datum
like Tournament2-Tic-Tac-Toe, every play of a 2PTG must terminate. This is something we can
now prove, after we give a precise definition of “play”:

Definition 9.3. A play of a 2PTG, G, is a (potentially infinite) sequence of 2PTG’s starting with G
and such that if G1 and G2 are consecutive 2PTG’s in the play, then G2 is a possible next move of
G1.

If a 2PTG has no infinite play, it is called a terminating game.

Theorem 9.4. Every 2PTG is terminating.

34 CHAPTER 1. INDUCTION

Proof. By structural induction on the definition of a 2PTG, G, with induction hypothesis

G is terminating.

Base case: If G = 〈leaf,win〉 or G = 〈leaf,lose〉 then the only possible play of G is the length
one sequence consisting of G. Hence G terminates.

Constructor case: For G = 〈tree,G〉, we must show that G is terminating, given the Induction
Hypothesis that every G′ ∈ G is terminating.

But any play of G is, by definition, a sequence starting with G and followed by a play starting with
some G0 ∈ G. But G0 is terminating, so the play starting at G0 is finite, and hence so is the play
starting at G.

This completes the structural induction, proving that every 2PTG, G, is terminating.

1.6.4 Game Strategies

A key question about a game is whether a player has a winning strategy. A strategy for a player in
a game specifies which move the player should make at any point in the game. A winning strategy
ensures that the player will win no matter what moves the other player makes.

In Tic-Tac-Toe for example, most elementary school children figure out strategies for both players
that each ensure that the game ends with no tic-tac-toes, that is, it ends in a tie. Of course the first
player can win if his opponent plays childishly, but not if the second player follows the proper
strategy. In more complicated games like Checkers or Chess, it’s not immediately clear that anyone
has a winning strategy, even if we agreed to count ties as wins for the second player.

But structural induction makes it easy to prove that in any 2PTG, somebody has the winning strat-
egy!

Theorem 9.5. Fundamental Theorem for Two-Person Games: For every two-person terminating game
of perfect information, there is a winning strategy for one of the players.

Proof. The proof is by structural induction on the definition of a 2PTG, G. The induction hypoth-
esis is that there is a winning strategy for G.

Base cases:

1. G = 〈leaf,win〉. Then the first player has the winning strategy: “make the winning move.”

2. G = 〈leaf,lose〉. Then the second player has a winning strategy: “Let the first player
make the losing move.”

Constructor case: Suppose G = 〈tree,G〉. By structural induction, we may assume that some
player has a winning strategy for each G′ ∈ G. There are two cases to consider:

• some G0 ∈ G has a winning strategy for its second player. Then the first player in G has
a winning strategy: make the move to G0 and then follow the second player’s winning
strategy in G0.

1.6. GAMES AS A RECURSIVE DATA TYPE, FROM SPRING ’08 35

• every G′ ∈ G has a winning strategy for its first player. Then the second player in G has
a winning strategy: if the first player’s move in G is to G0 ∈ G, then follow the winning
strategy for the first player in G0.

So in any case, one of the players has a winning strategy for G, which completes the proof of the
constructor case.

It follows by structural induction that there is a winning strategy for every 2PTG, G.

Notice that although Theorem 9.5 guarantees a winning strategy, its proof gives no clue which
player has it. For most familiar 2PTG’s like Checkers, Chess, Go, . . . , no one knows which player
has a winning strategy.

1.6.5 Class Problems

36 CHAPTER 1. INDUCTION

1.7 Problems

1.7.1 Homework Problems

1.7. PROBLEMS 37

1.7.2 Miniquiz Problems

	1 Induction
	1.1 Ordinary Induction
	1.1.1 Using Ordinary Induction
	1.1.2 A Template for Induction Proofs
	1.1.3 A Clean Writeup
	1.1.4 Powers of Odd Numbers
	1.1.5 Courtyard Tiling
	1.1.6 A Faulty Induction Proof
	1.1.7 Class Problems

	Problem 2
	Problem 3
	(a)
	(b)

	Problem 4
	(a)
	(b)

	Problem 5
	1.2 Strong Induction
	1.2.1 The Strong Induction Principle
	1.2.2 Products of Primes
	1.2.3 Making Change
	1.2.4 Unstacking
	1.2.5 Class Problems

	1.3 Induction versus Well Ordering
	1.3.1 Class Problems

	1.4 Structural Induction
	1.4.1 Recursive Data Types
	1.4.2 Strings of Parentheses
	1.4.3 Arithmetic Expressions
	1.4.4 The Nonnegative Integers
	1.4.5 Structural Induction on Recursive Data Types
	(a)
	(b)
	1.4.6 Functions on Recursively-defined Data Types
	1.4.7 Recursive Functions on Nonnegative Integers
	1.4.8 Evaluation and Substitution with Aexp's

	1.5 Induction in Computer Science
	1.6 Games as a Recursive Data Type, from Spring '08
	1.6.1 Tic-Tac-Toe
	1.6.2 Infinite Tic-Tac-Toe Games
	1.6.3 Two Person Terminating Games
	1.6.4 Game Strategies
	1.6.5 Class Problems

	1.7 Problems
	1.7.1 Homework Problems
	1.7.2 Miniquiz Problems

