6.042J/18.062J Staff Notes Week of Tues., Apr. 5 through Monday, Apr. 11 ---------------------------------------------------------------------- Reading: ---------------------------------------------------------------------- Lecture 16: Exponential generating functions 15 EGF's Definition Examples Manipulations, including binomial convolution 15 EGF's for permutations $(1+x)^n$ is EGF for Theorem: product of EGF's for r-perms of union of sets Ex: EGF for r-perms of n-obj set is $(1+x)^n$ 40 Examples Count: r-perms of {2\cdot a, 3\cdot b} Count: r-perms of {\infty\cdot 1,\infty\cdot 2,\ldots,\infty\cdot n} Count: r-perms of {\infty\cdot a,\infty\cdot b,\infty\cdot c} where each of a,b,c appears at least once Count: r-perms of {\infty\cdot a,\infty\cdot b,\infty\cdot c} where #a's is even Count: r-perms of {\infty\cdot a,\infty\cdot b,\infty\cdot c} where # a's + b's is even Count: r-perms of {n_1\cdot 1,n_2\cdot 2,\ldots,n_k\cdot k} Ans = to count r-perms, count perms of r-submultisets ----------------------------------------------------------------------