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The Well Ordering Principle

Every non-empty set of natural numbers has a minimum element.

Do you believe this statement? Seems obvious, right? Well, it is. But don’t fail to realize
how tight it is. Crucially, it talks about a non-empty set —otherwise, it would clearly be
false. And it also talks about natural numbers —otherwise, it might again be false: think
for example what would happen with the integers, or even the positive rational numbers.

This statement has a name, it is called the well-ordering principle. And, as most things
we give names to, it’s important. Why? Because it is equivalent to induction.

Something can be proved by induction iff it can be proved by the well-ordering principle.

We could go on and give a general proof of this, but we won’t. Instead, we’ll just convince
ourselves of it by going through an example. We’ll reprove something that in the Notes
(see Course Notes for Week 3, Theorem 4.1) was proved by induction. Read the next page.

For reference, here is the outline that a proof by the well-ordering principle has. (Compare
it with the corresponding outline of a proof by strong induction given in Section 4.1 of the
Notes.)

To prove that “P (n) is true for all n ∈ N” using the well-ordering principle:

• Use proof by contradiction.

• Assume that P (n) has counterexamples. I.e., that P (n) is false on at least one
n.

• Define the set of counterexamples C = {n ∈ N | ¬P (n)}.

• Invoke the well-ordering principle to select the minimum element c of C.

• Since c is the smallest counterexample to P (n), conclude that both ¬P (c) and
P (0), P (1), . . . , P (c−1). Use these to arrive at a contradiction. Watch out: the
list 0, 1, . . . , c − 1 will contain no numbers at all if c = 0.

• Conclude that P (n) must have no counterexamples. Namely, that (∀n)P (n).
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Theorem. For all n ∈ N: 1 + 2 + 3 + · · · + n = n(n+1)
2

.

Proof. By contradiction. Assume that the theorem is false. Then, some natural numbers
serve as counterexamples to it. Let’s collect them in a set:

C =
{

n ∈ N | 1 + 2 + 3 + · · · + n 6= n(n+1)
2

}
.

By our assumption that the theorem admits counterexamples, C is a non-empty set of
natural numbers. So, by the well-ordering principle, C has a minimum element, call it c.
That is, c is the smallest counterexample to the theorem.

Since c is a counterexample (c ∈ C), we know that

1 + 2 + 3 + · · · + c 6= c(c+1)
2

.

Since c is the smallest counterexample (c minimum of C), we know the theorem holds
for all natural numbers smaller than c. (Otherwise, at least one of them would also be
in C and would therefore prevent c from being the minimum of C.) [∗] In particular, the
theorem is true for c − 1. That is,

1 + 2 + 3 + · · · + (c − 1) = (c−1)c
2

.

But then, adding c to both sides we get

1 + 2 + 3 + · · · + (c − 1) + c = (c−1)c
2

+ c = c2−c+2c
2

= c(c+1)
2

,

which means the theorem does hold for c, after all! That is, c is not a counterexample. But
this is a contradiction. And we are done.

Well, almost. Our argument contains a bug. Everything we said after [∗] bases on the fact
that c − 1 actually exists. That is, that there is indeed some natural number smaller than
c. How do we know that? How do we know that c is not 0? Fortunately, this can be fixed.
We know c 6= 0 because c is a counterexample whereas 0 is not, as 0 = 0(0 + 1)/2.


