Quiz, Week 4

Problem 1. (a) What are the maxim*al* and minim*al* elements, if any, of the set, \mathbb{N} , of all nonnegative integers under divisibility? Is there a minim*um* or maxim*um* element?

(b) What are the minimal and maximal elements, if any, of the set of integers ≥ 2 under divisibility?

(c) Describe an infinite chain and an infinite antichain in the divisibility partial order on the nonnegative integers.

(d) Describe a partially ordered set (i.e., describe a set and then a partial order on this set) that has no minimal or maximal elements.

Copyright © 2006, Prof. Albert R. Meyer. All rights reserved.

Problem 2. Consider two integers, *a* and *b*. We define the set, *L*, recursively, as follows:

- Base case: $0 \in L$.
- **Constructor cases:** if $x \in L$, then
 - $x + a \in L$,
 - $x a \in L$,
 - $x + b \in L$,
 - $x b \in L$.

Use structural induction to prove that all members of L are integer linear combinations of a and b. In other words, prove that

for every $x \in L$: x = sa + tb for some integer coefficients s and t.

Quiz, Week 4

Appendix

Arithmetic

If *m* and *n* are nonnegative integers, we say *m* divides *n* if km = n for some nonnegative integer *k*.

Relational Properties

A binary relation, *R*, on a set, *A*, is

- *transitive* if for every $a, b, c \in A$, aRb and bRc implies aRc.
- *asymmetric* if for every $a, b \in A$, aRb implies $\neg(bRa)$,
- *reflexive* if aRa for every $a \in A$,
- *antisymmetric* if for every $a \neq b \in A$, aRb implies $\neg(bRa)$,
- *irreflexive* if aRa holds for no $a \in A$.

Partial Orders

A binary relation is a *strict partial order* iff it is transitive and asymmetric. It is a *weak partial order* iff it is transitive, reflexive, and antisymmetric.

Let \leq be a weak (reflexive) partial order on a set, *A*.

- An element $a \in A$ is *minimal* iff there is no element in A that is $\leq a$ except possibly a itself. Similarly, an element $a \in A$ is *maximal* iff there is no element in A that is $\geq a$ except possibly a itself.
- An element $a \in A$ is a *lower bound* for a subset, $S \subseteq A$ iff $a \preceq s$ for every $s \in S$. Similarly, an element $a \in A$ is an *upper bound* for a subset, $S \subseteq A$ iff $s \preceq a$ for every $s \in S$.
- An element *a* ∈ *A* is the *minimum* element iff *a* is a lower bound on *A*. Similarly, an element *a* ∈ *A* is the *maximum* element iff *a* is an upper bound on *A*.
- Elements *a*, *b* ∈ *A* are *comparable* iff either *a* ≤ *b* or *b* ≤ *a*. Two elements are *incomparable* iff they are not comparable.
- A subset, $S \subseteq A$ is *totally ordered* iff every two distinct elements in S are comparable.
- A *chain* is a totally ordered subset of *A*.
- An *antichain* is a subset of *A*, such that no two elements in it are comparable.