Problem Set 3

Due: March 13

Reading: Notes for Week4

Problem 1. Fractals are yet another example of a mathematical object that can be defined recursively. In this problem, we consider the Koch snowflake. Any Koch snowflake can be constructed by the following recursive definition.

- Base Case: An equilateral triangle is a Koch snowflake.
- Recursive case: Let *K* be a Koch snowflake, and let *l* be a line segment on the snowflake. Remove the middle third of *l*, and replace it with two line segments of the same length as is done below:

The resulting figure is also Koch snowflake.

Prove by structural induction that the area inside any Koch snowflake is always a multiple of $\sqrt{3}$.

Problem 2. State machines and invariants

Problem 3.

Problem 4.

Problem 5.

Copyright © 2006, Prof. Albert R. Meyer. All rights reserved.

Problem 6.

Problem 7.

Student's Solutions to Problem Set 3

Your name:

Due date: March 13

Submission date:

Circle your TA: Christos Grant Sonya

Collaboration statement: Circle one of the two choices and provide all pertinent info.

- 1. I worked alone and only with course materials.
- 2. I collaborated on this assignment with:

got help from:¹

and referred to:²

DO NOT WRITE BELOW THIS LINE

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

Copyright © 2006, Prof. Albert R. Meyer. All rights reserved.

¹People other than course staff.

²Give citations to texts and material other than the Spring '06 course materials.