In-Class Problems Week 2, Fri.

Problem 1. Subset take-away¹ is a two player game involving a fixed finite set, A. Players alternately choose proper, nonempty subsets of A with the condition that one may not name a set containing a set that was named earlier. A player who is unable to move loses.

For example, if A is $\{1\}$, then there are no legal moves and the second player wins. If A is $\{1,2\}$, then the only legal moves are $\{1\}$ and $\{2\}$. Each is a good reply to the other, and so once again the second player wins.

The first interesting case is when *A* has three elements. This time, if the first player picks a subset with one element, the second player picks the subset with the other two elements. If the first player picks a subset with two elements, the second player picks the subset whose sole member is the third element. Both cases produce positions equivalent to the starting position when *A* has two elements, and thus leads to a win for the second player.

Verify that when A has four elements, the second player still has a winning strategy.²

Problem 2. (a) Define a bijection between \mathbb{N} and \mathbb{Z} .

(b) Define a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$ (the ordered pairs $(0,0),(0,1),(1,2),\ldots$ of natural numbers).

Copyright © 2006, Prof. Albert R. Meyer. All rights reserved.

¹From Christenson & Tilford, David Gale's Subset Takeaway Game, American Mathematical Monthly, Oct. 1997

²David Gale worked out some of the properties of this game and conjectured that the second player wins the game for any set *A*. This remains an open problem.