
6.042/18.062J Mathematics for Computer Science February 25, 2005
Srini Devadas and Eric Lehman

Problems for Recitation 7

1 RSA

RSA Public-Key Encryption

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and q.

2. Let n = pq.

3. Select an integer e such that gcd(e, (p− 1)(q − 1)) = 1.
The public key is the pair (e, n). This should be distributed widely.

4. Compute d such that de ≡ 1 (mod (p− 1)(q − 1)).
The secret key is the pair (d, n). This should be kept hidden!

Encoding The sender encrypts message m to produce m′ using the public key:

m′ = me rem n.

Decoding The receiver decrypts message m′ back to message m using the secret key:

m = (m′)d rem n.



Recitation 7 2

2 Let’s try it out!

You’ll probably need extra paper. Check your work carefully!

• As a team, go through the beforehand steps.

– Choose primes p and q to be relatively small, say in the range 10-20. In practice,
p and q might contain several hundred digits, but small numbers are easier to
handle with pencil and paper.

– Try e = 3, 5, 7, . . . until you find something that works. Use Euclid’s algorithm
to compute the gcd.

– Find d using the Pulverizer. (You don’t remember it? Check the last page.)

When you’re done, put your public key on the board. This lets another team send
you a message.

• Now send an encrypted message to another team using their public key. Select your
message m from the codebook below:

2 = Greetings and salutations!

3 = Yo, wassup?

4 = You guys suck!

5 = All your base are belong to us.

6 = Someone on our team thinks someone on your team is kinda cute.

7 = You are the weakest link. Goodbye.

• Decrypt the message sent to you and verify that you received what the other team
sent!

• Explain how you could read messages encrypted with RSA if you could quickly
factor large numbers.



Recitation 7 3

3 But does it really work?

A critical question is whether decrypting an encrypted message always gives back the
original message! Mathematically, this amounts to asking whether:

mde ≡ m (mod pq).

Note that the procedure ensures that de = 1 + k(p− 1)(q − 1) for some integer k.

• This congruence holds for all messages m. First, use Fermat’s theorem to prove that
m ≡ mde (mod p) for all m. (Fermat’s Theorem says that ap−1 ≡ 1 (mod p) if p is a
prime that does not divide a.)

• By the same argument, you can equally well show that m ≡ med (mod q). Show
that these two facts together imply that m ≡ med (mod pq) for all m.



Recitation 7 4

I can’t believe you don’t remember The Pulverizer. . .

Euclid’s algorithm for finding the GCD of two numbers relies on repeated application
of the equation:

gcd(a, b) = gcd(b, a rem b)

For example, to compute the GCD of 259 and 70 we calculate:

gcd(259, 70) = gcd(70, 49) since 259 rem 70 = 49
= gcd(49, 21) since 70 rem 49 = 21
= gcd(21, 7) since 49 rem 21 = 7
= gcd(7, 0) since 21 rem 7 = 0
= 7.

The Pulverizer goes through the same steps, but requires some extra bookkeeping
along the way: as we compute gcd(a, b), we keep track of how to write each of the
remainders (49, 21, and 7, in the example) as a linear combination of a and b (our
objective is to write the last nonzero remainder, which is the GCD, as such a linear
combination). For our example, here is this extra bookkeeping:

x y (x rem y) = x− q · y
259 70 49 = 259− 3 · 70
70 49 21 = 70− 1 · 49

= 70− 1 · (259− 3 · 70)
= −1 · 259 + 4 · 70

49 21 7 = 49− 2 · 21
= (259− 3 · 70)− 2 · (−1 · 259 + 4 · 70)

= 3 · 259− 11 · 70

21 7 0

We began by initializing two variables, x = a and y = b. In the first two columns,
we carried out Euclid’s algorithm. At each step, we computed x rem y, which can be
written in the form x− q ·y. (Remember that the Division Algorithm says x = q ·y + r,
where r is the remainder. We get r = x−q ·y by rearranging terms.) Then we replaced
x and y in this equation with equivalent linear combinations of a and b, which we
already had computed. After simplifying, we were left with a linear combination of
a and b that was equal to the remainder as desired. The final solution is boxed.


	RSA
	Let's try it out!
	But does it really work?

