
6.042/18.062J Mathematics for Computer Science February 25, 2005
Srini Devadas and Eric Lehman

Notes for Recitation 7

1 RSA

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman proposed a highly secure cryp-
tosystem (called RSA) based on number theory. Despite decades of attack, no significant
weakness has been found. (Well, none that you and me would know. . . ) Moreover, RSA
has a major advantage over traditional codes: the sender and receiver of an encrypted
message need not meet beforehand to agree on a secret key. Rather, the receiver has both
a secret key, which she guards closely, and a public key, which she distributes as widely
as possible. To send her a message, one encrypts using her widely-distributed public key.
Then she decrypts the message using her closely-held private key. The use of such a pub-
lic key cryptography system allows you and Amazon, for example, to engage in a secure
transaction without meeting up beforehand in a dark alley to exchange a key.

RSA Public-Key Encryption

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and q.

2. Let n = pq.

3. Select an integer e such that gcd(e, (p − 1)(q − 1)) = 1.
The public key is the pair (e, n). This should be distributed widely.

4. Compute d such that de ≡ 1 (mod (p − 1)(q − 1)).
The secret key is the pair (d, n). This should be kept hidden!

Encoding The sender encrypts message m to produce m′ using the public key:

m′ = me rem n.

Decoding The receiver decrypts message m′ back to message m using the secret key:

m = (m′)d rem n.



Recitation 7 2

2 Let’s try it out!

You’ll probably need extra paper. Check your work carefully!

• As a team, go through the beforehand steps.

– Choose primes p and q to be relatively small, say in the range 10-20. In practice,
p and q might contain several hundred digits, but small numbers are easier to
handle with pencil and paper.

– Try e = 3, 5, 7, . . . until you find something that works. Use Euclid’s algorithm
to compute the gcd.

– Find d using the Pulverizer.

When you’re done, put your public key on the board. This lets another team send
you a message.

• Now send an encrypted message to another team using their public key. Select your
message m from the codebook below:

2 = Greetings and salutations!

3 = Yo, wassup?

4 = You guys suck!

5 = All your base are belong to us.

6 = Someone on our team thinks someone on your team is kinda cute.

7 = You are the weakest link. Goodbye.

• Decrypt the message sent to you and verify that you received what the other team
sent!

• Explain how you could read messages encrypted with RSA if you could quickly
factor large numbers.

Solution. Suppose you see a public key (e, n). If you can factor n to obtain p and q,
then you can compute d using the Pulverizer. This gives you the secret key (d, n),
and so you can decode messages as well as the inteded recipient.



Recitation 7 3

3 But does it really work?

A critical question is whether decrypting an encrypted message always gives back the
original message! Mathematically, this amounts to asking whether:

mde ≡ m (mod pq).

Note that the procedure ensures that de = 1 + k(p − 1)(q − 1) for some integer k.

• This congruence holds for all messages m. First, use Fermat’s theorem to prove that
m ≡ mde (mod p) for all m. (Fermat’s Theorem says that ap−1 ≡ 1 (mod p) if p is a
prime that does not divide a.)

Solution. If m is a multiple of p, then the claim holds because both sides are con-
gruent to 0 mod p. Otherwise, suppose that m is not a multiple of p. Then:

m1+k(p−1)(q−1) ≡ m · (mp−1)k(q−1) (mod p)

≡ m · 1k(q−1) (mod p)

≡ m (mod p)

The second step uses Fermat’s theorem, which says that mp−1 ≡ 1 (mod p) provided
m is not a multiple of p.

• By the same argument, you can equally well show that m ≡ med (mod q). Show
that these two facts together imply that m ≡ med (mod pq) for all m.

Solution. We know that:

p | (m − med),

q | (m − med).

Thus, both p and q appear in the prime factorization of m − med. Therefore, pq |
(m − med), and so:

m ≡ med (mod pq).


