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Notes for Recitation 4

1 Strong Induction

Recall the principle of strong induction:

Principle of Strong Induction. Let P (n) be a predicate. If

• P (0) is true, and

• for all n ∈ N, P (0) ∧ P (1) . . . ∧ P (n) implies P (n + 1),

then P (n) is true for all n ∈ N.

As an example, let’s derive the fundamental theorem of arithmetic.

Theorem 1. Every positive integer n ≥ 2 can be written as the product of primes.

Proof. The proof is by strong induction. Let P (n) be the statement that n can be written
as the product of primes.

Base case: 2 is itself a prime, so P (2) holds.

Inductive case: We show that P (2) ∧ P (3) . . . P (n) ⇒ P (n + 1) is true. Assume that
P (2), P (3), . . . P (n) are true. Consider n + 1. If n + 1 is a prime number, P (n + 1) holds.
Otherwise, n + 1 is a composite number; thus it has factors 2 ≤ u, v < n + 1 such that
u · v = n + 1. By the inductive hypothesis, u =

∏
i pi for primes pi and v =

∏
j pj for

primes pj , so therefore, n + 1 =
∏

i pi ·
∏

pj , i.e. P (n + 1) is true. By the principle of strong
induction, P (n) is true for all n ≥ 2.
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2 Problem: Mini-Tetris

A winning configuration in the game of Mini-Tetris is a complete tiling of a 2 × n board
using only the three shapes shown below:

For example, here are several possible winning configurations on a 2× 5 board:

1. Let Tn denote the number of different winning configurations on a 2× n board. Deter-
mine the values of T1, T2, and T3.

Solution. T1 = 1, T2 = 3, and T3 = 5.

2. Express Tn in terms of Tn−1 and Tn−2.

Solution. Every winning configuration on a 2×n board is of one of the following three
types:
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There are Tn−1 winning configurations of the first type, and there are Tn−2 winning con-
figurations of the second and third types. Overall, the number of winning configurations
on a 2× n board is:

Tn = Tn−1 + 2Tn−2
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3. Using strong induction, prove that the number of winning configurations on a 2 × n
Mini-Tetris board (n ≥ 1) is:

Tn =
2n+1 + (−1)n

3

Solution. The proof is by strong induction on n, with the induction hypothesis Tn =
(2n+1 + (−1)n)/3. The hypothesis is true for n = 1 and n = 2, since we determined above
that T1 = 1 = (21+1 + (−1)1)/3 and T2 = 3 = (22+1 + (−1)2)/3.

Now suppose n ≥ 2 and assume that the hypothesis holds for all k < n. Starting from
the equation derived in the preceding problem part, we have:

Tn = Tn−1 + 2Tn−2

=
2n + (−1)n−1

3
+ 2 · 2n−1 + (−1)n−2

3

=
2n − (−1)n

3
+

2n + 2(−1)n

3

=
2n+1 + (−1)n

3

We use the induction hypothesis twice in the second step, and then simplify in the third
and fourth steps. This completes the inductive step. By strong induction, the hypothesis
holds for all n ≥ 1.
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3 Problem: Breaking a chocolate bar

We are given a chocolate bar with m× n squares of chocolate, and our task is to divide it
into mn individual squares. We are only allowed to split one piece of chocolate at a time
using a vertical or a horizontal break.

For example, suppose that the chocolate bar is 2 × 2. The first split makes two pieces,
both 2× 1. Each of these pieces requires one more split to form single squares. This gives
a total of three splits.

Use strong induction to conclude the following:

Theorem. To divide up a chocolate bar with m× n squares, we need at most mn− 1 splits.

Solution. This theorem does not immediately lend itself to an induction proof, since
there are two variables. In general, propositions involving several natural-valued vari-
ables can often be proved by using a sort of nested induction. However, in this case, we
can get by with a single-variable induction and a trick.

Intuitively, to break up a big chocolate bar, we need one split to make two pieces, and
then we can break up the two pieces recursively. This suggests a proof using strong in-
duction on the size of the chocolate bar, where size is measured in chocolate squares. Now
instead of a problem involving two variables (the two dimensions), we have a problem in
one variable (the size). With this simplification, we can prove the theorem using strong
induction.

Proof. The proof is by strong induction on the size of the chocolate bar. Let P (k) be the
proposition that a chocolate bar of size k requires at most k − 1 splits.

Base case, k = 1: P (1) is true because there is only a single square of chocolate, and
1− 1 = 0 splits are required.

Induction step: We suppose k ≥ 1 and any chocolate bar of size s, where 1 ≤ s ≤ k,
requires at most s− 1 splits. We must now show there is a way to split a chocolate bar of
size k + 1 with at most k splits.

To do this, first break the chocolate bar of size k+1 into two smaller pieces of size p and
q where p + q = k + 1. This is certainly possible because the size of the bar is at least two.
Now the pieces of sizes p and q are between one and k, so by strong induction, breaking
these two pieces into single squares requires only p− 1 and q − 1 splits, respectively. The
total number of splits required to break the bar of size k+1 into single squares is therefore
at most 1 + (p− 1) + (q − 1) = p + q − 1 = (k + 1)− 1 = k.

This shows that P (k) implies P (k+1), and the claim is proved by strong induction.
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4 Problem: Fibonacci numbers

The Fibonacci numbers are defined as follows:

F1 = 1, F2 = 1, and for all k ≥ 3, Fk = Fk−1 + Fk−2.

The first few terms of the Fibonacci sequence are:

1, 1, 2, 3, 5, 8, 13, 21, . . .

We can’t find every single number in the Fibonacci sequence – for instance, 4 is not a
number in the sequence. But can we express every n ≥ 1 as the sum of distinct terms in
the Fibonacci sequence? Indeed, we can!

Use strong induction to prove the following:

Theorem 2. Every n ≥ 1 can be expressed as the sum of distinct terms in the Fibonacci sequence.

Solution.

Proof. We proceed by strong induction. Let P (n) be the statement that n can be written as
the sum of distinct terms in the Fibonacci sequence.

Base case: 1 itself is a term in the Fibonacci sequence, so P (1) is true.

Inductive case: We want to show that P (1) ∧ P (2) . . . P (n) ⇒ P (n + 1) is true. Assume
that P (1), P (2) . . . P (n) all hold. Consider n + 1. If n + 1 is a Fibonacci number, then we
are done. If not, we have, for some k ≥ 1,

Fk < n + 1 < Fk+1.

This gives us the equation:
n + 1 = Fk + (n + 1− Fk)

. Now n + 1− Fk < n + 1, so by the induction hypothesis, P (n + 1− Fk) is true, i.e.

n + 1− Fk = Fj1 + Fj2 + . . . .

Furthermore, none of the Fji
is Fk, since since n + 1 − Fk < Fk. Therefore, we have that

P (n + 1) is true, i.e.:
n + 1 = Fk + Fj1 + Fj2 + . . . .

By the principle of strong induction, P (n) is true for all n.
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