Problems for Recitation 11

1 The Quest

An explorer is trying to reach the Holy Grail, which she believes is located in a desert shrine d days walk from the nearest oasis. In the desert heat, the explorer must drink continuously. She can carry at most 1 gallon of water, which is enough for 1 day. However, she is free to create water caches out in the desert.

For example, if the shrine were 2/3 of a day's walk into the desert, then she could recover the Holy Grail with the following strategy. She leaves the oasis with 1 gallon of water, travels 1/3 day into the desert, caches 1/3 gallon, and then walks back to the oasis arriving just as her water supply runs out. Then she picks up another gallon of water at the oasis, walks 1/3 day into the desert, tops off her water supply by taking the 1/3 gallon in her cache, walks the remaining 1/3 day to the shine, grabs the Holy Grail, and then walks for 2/3 of a day back to the oasis— again arriving with no water to spare.

But what if the shrine were located farther away?

- (a) What is the most distant point that the explorer can reach and return from if she takes only 1 gallon from the oasis.?
- (b) What is the most distant point the explorer can reach and return form if she takes only 2 gallons from the oasis? No proof is required; just do the best you can.

(c) What about 3 gallons? (Hint: First, try to establish a cache of 2 gallons *plus* enough water for the walk home as far into the desert as possible. Then use this cache as a springboard for your solution to the previous part.)

Recitation 11

(d) How can the explorer go as far as possible is she withdraws n gallons of water? Express your answer in terms of the Harmonic number H_n , defined by:

$$H_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

(e) Use the fact that

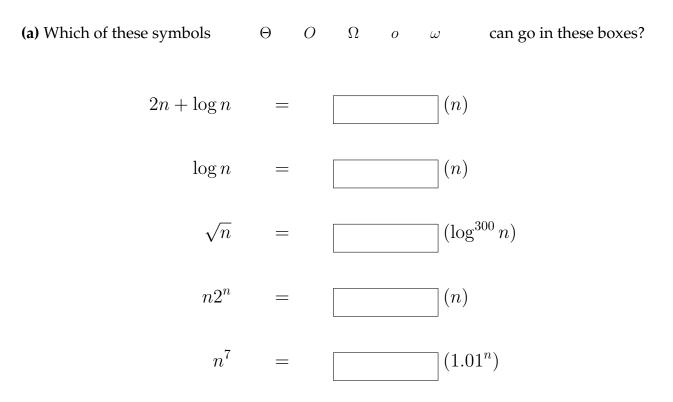
 $H_n \sim \ln n$

to approximate your previous answer in terms of logarithms.

(f) Suppose that the shrine is d = 10 days walk into the desert. Relying on your approximate answer, how many days must the explorer travel to recover the Holy Grail?

Recitation 11

2 Asymptotic notation



(b) Indicate which of the following holds for each pair of functions f(n), g(n) in the table below; $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Be prepared to justify your answers.

f(n)	g(n)	f = O(g)	f = o(g)	g = O(f)	g = o(f)	$f = \Theta(g)$	$f \sim g$
2^n	$2^{n/2}$						
\sqrt{n}	$n^{\sin n\pi/2}$						
$\log(n!)$	$\log(n^n)$						
n^k	c^n						
$\log^k n$	n^{ϵ}						

cheat sheet

Definitions. Intuitively and precisely the notations mean the following:

$f = \Theta(g)$	f grows as fast as g	There exists n_0 and $c_1, c_2 > 0$ such that for all $n > n_0$: $c_1g(n) \le f(n) \le c_2g(n)$.
f = O(g)	f grows <i>no faster</i> than g	There exists n_0 and $c > 0$ such that for all $n > n_0$: $ f(n) \le cg(n)$.
$f = \Omega(g)$	f grows <i>no slower</i> than g	There exists n_0 and $c > 0$ such that for all $n > n_0$: $cg(n) \le f(n) $.
f = o(g)	f grows <i>slower</i> than g	For all $c > 0$, there exists n_0 such that for all $n > n_0$: $ f(n) \le cg(n)$.
$f=\omega(g)$	f grows <i>faster</i> than g	For all $c > 0$, there exists n_0 such that for all $n > n_0$: $cg(n) \le f(n) $.
$f \sim g$	f/g approaches 1	$\lim_{n \to \infty} f(n)/g(n) = 1$

Relationships. Some asymptotic relationships between functions imply others:

 $\begin{array}{ll} f = O(g) \text{ and } f = \Omega(g) & \Leftrightarrow & f = \Theta(g) \\ f = O(g) & \Leftrightarrow & g = \Omega(f) \\ f = o(g) & \Leftrightarrow & g = \omega(f) \end{array} \qquad \begin{array}{ll} f = o(g) & \Rightarrow & f = O(g) \\ f = \omega(g) & \Rightarrow & f = \Omega(g) \\ f \sim g & \Rightarrow & f = \Theta(g) \end{array}$

Limits. If the $\lim_{n\to\infty} f(n)/g(n)$ exists, it reveals a lot about the relationship of f and g:

$\lim_{n\to\infty} f/g \neq 0, \infty$	\Rightarrow	$f = \Theta(g)$	$\lim_{n \to \infty} f/g = 1 = $	>	$f \sim g$
$\lim_{n\to\infty} f/g \neq \infty$	\Rightarrow	f = O(g)	$\lim_{n \to \infty} f/g = 0 = $	>	f = o(g)
$\lim_{n\to\infty} f/g \neq 0$	\Rightarrow	$f = \Omega(g)$	$\lim_{n\to\infty} f/g = \infty = $	>	$f=\omega(g)$

In this context, L'Hospital's Rule is often useful:

If
$$\lim_{n \to \infty} f(n) = \infty$$
 and $\lim_{n \to \infty} g(n) = \infty$, then $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$.

Logarithms vs. polynomials vs. exponentials. *Everybody* knows the following two facts:

- polylogarithms grow *slower* than polynomials: for all a, b > 0, $(\ln n)^a = o(n^b)$.
- polynomials grow *slower* than exponentials: for all b, c > 0, $n^b = o((1+c)^n)$.