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Problem Set 4 Solutions

Due: Tuesday, February 28 at 9 PM in Room 32-044

Problem 1. Prove all of the following statements except for the two that are false; for
those, provide counterexamples. Assume n > 1. When proving each statement, you may
assume all its predecessors.

(a) a ≡ a (mod n)

Solution. Every number divides zero, so n | (a− a), which means a ≡ a (mod n).

(b) a ≡ b (mod n) implies b ≡ a (mod n)

Solution. The statement a ≡ b (mod n) implies n | (a− b), which means there is an
integer k such that nk = a− b. Thus, n(−k) = b−a, so n | (b−a) as well. This means
b ≡ a (mod n).

(c) a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n)

Solution. The two assumptions imply n | (a− b) and n | (b− c). Thus, n divides the
linear combnation (a− b) + (b− c) = a− c as well. This means n | (a− c).

(d) a ≡ b (mod n) implies a + c ≡ b + c (mod n)

Solution. The first statement implies n | (a − b). Rewriting the right side gives
n | (a + c)− (b + c), which means a + c ≡ b + c (mod n).

(e) a ≡ b (mod n) implies ac ≡ bc (mod n)

Solution. The first statement implies n | (a−b). Thus, n also divides c(a−b) = ac−bc.
Therefore, ac ≡ bc (mod n).

(f) ac ≡ bc (mod n) implies a ≡ b (mod n) provided c 6≡ 0 (mod n).

Solution. This is false. For example, 6 · 2 ≡ 8 · 2 (mod 4), but 6 6≡ 8 (mod 4).

(g) a ≡ b (mod n) and c ≡ d (mod n) imply a + c ≡ b + d (mod n)

Solution. The assumptions, together with part (e), give:

a + c ≡ b + c (mod n)

b + c ≡ b + d (mod n)

Now part (c) implies a + c ≡ b + d mod n.
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(h) a ≡ b (mod n) and c ≡ d (mod n) imply ac ≡ bd (mod n)

Solution. The assumptions, together with part (e), give:

ac ≡ bc (mod n)

bc ≡ bd (mod n)

Now part (c) implies ac ≡ bc mod n.

a ≡ b (mod n) implies ak ≡ bk (mod n) for all k ≥ 0.

Solution. We use induction. Let P (k) be the proposition that a ≡ b (mod n) implies
ak ≡ bk.

Base case. P (0) is true, since a0 = b0 = and 1 ≡ 1 (mod n) by part(a).

Inductive step. For k ≥ 0, we assume P (k) to prove P (k + 1). Thus, assume akbk (mod n).
Then by the fact that a ≡ b (mod n) and part (g), we have ak+1 ≡ bk+1 (mod n).

By induction, the P (k) holds for all k ≥ 0.

a ≡ b (mod n) implies ka ≡ kb (mod n) for all k ≥ 0.

Solution. This is false. For example, 0 ≡ 3 (mod 3), but 20 6≡ 23 (mod 3).

(a rem n) ≡ a (mod n)

Solution. By definition of rem , a rem n = a− qn for some integer n. We can reason as
follows:

(a rem n) ≡ a− qn (mod n)

≡ a (mod n) from (d) and qn ≡ 0 (mod n)

Problem 2. Prove that there exists an integer k−1 such that

k · k−1 ≡ 1 (mod n)

provided gcd(k, n) = 1. Assume n > 1.

Solution. If gcd(g, n) = 1, then there exist integers x and y such that gx + yn = 1.
Therefore, yn = 1− gx, which means n | (1− gx) and so gx ≡ 1 (mod n). Let k′ be x.

Problem 3. Reviewing the analysis of RSA may help you solve the following problems.
You may assume results proved in recitation.

(a) Let n be a nonnegative integer. Prove that n and n5 have the same last digit. For
example:

25 = 32 795 = 3077056399

Solution. The correctness of RSA relies on the following fact: if p and q are distinct
primes, then

m1+k(p−1)(q−1) ≡ m (mod pq)

for all m and k. Setting k = 1, p = 5, and q = 2 proves the claim.
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(b) Suppose that p1, . . . , pk are distinct primes. Prove that

m1+(p1−1)(p2−1)·(pk−1) ≡ m (mod p1p2 . . . pk)

for all m and all k ≥ 1.

Solution. We use strong induction. Let Q(k) be the proposition that

m1+(p1−1)(p2−1)·(pk−1) ≡ m (mod p1p2 . . . pk)

for all m.

Base case. Fermat’s Theorem says:

mp1−1 ≡ 1 (mod p1)

provided m is not a multiple of p1. Multiplying both sides by m gives:

mp1 ≡ m (mod p1)

This also holds when m is a multiple of p1, because both sides are then congruent to
zero. This proves Q(1).

Inductive Step. We assume Q(1), . . . , Q(k) in order to prove Q(k + 1). From Q(1) and
Q(k), we have:

m1+(p1−1)(p2−1)·(pk−1) ≡ m (mod p1p2 . . . pk)

mp1 ≡ m (mod pk+1)

These two statements imply:

p1p2 . . . pk | (m1+(p1−1)(p2−1)·(pk−1) −m)pk+1 | (mp1 −m)

Thus, the prime factorization of m1+(p1−1)(p2−1)·(pk−1) −m contains all of p1, . . . , pk+1.
Thus:

p1p2 . . . pk+1 | (m1+(p1−1)(p2−1)·(pk−1) −m)

Or, equivalently:

m1+(p1−1)(p2−1)·(pk−1) ≡ m (mod p1p2 . . . pk+1)

Therefore, Q(k) is true for all k ≥ 1 by strong induction.

Problem 4. Suppose that p is a prime.

(a) An integer k is self-inverse if k·k ≡ 1 (mod p). Find all integers that are self-inverse
mod p.

Solution. The congruence holds if and only if p | k2 − 1 which is equivalent to
p | (k + 1)(k − 1). this holds if and only if either p | k + 1 or p | k − 1. Thus, k ≡ ±1
(mod p).
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(b) Wilson’s Theorem says that (p−1)! ≡ −1 (mod p). The English mathematician Ed-
ward Waring said that this statement would probably be extremely difficult to prove
because no one had even devised an adequate notation for dealing with primes.
(Gauss proved it while standing.) Your turn! Stand up, if you like, and try can-
celling terms of (p− 1)! in pairs.

Solution. If p = 2, then the theorem holds, because 1! ≡ −1 (mod 2). If p > 2,
then p− 1 and 1 are distinct terms in the product 1 · 2 · · · · (p− 1), and these are the
only self-inverses. Consequently, we can pair each of the remaining terms with its
multiplicative inverse. Since the product of a number and its inverse is congruent
to 1, all of these remaining terms cancel. Therefore, we have:

(p− 1)! ≡ 1 · (p− 1) (mod p)

≡ −1 (mod p)
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