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Recurrences

Recursion— breaking an object down into smaller objects of the same type— is a ma-
jor theme in mathematics and computer science. For example, in an induction proof we
establish the truth of a statement P (n) from the truth of the statement P (n − 1). In pro-
gramming, a recursive algorithm solves a problem by applying itself to smaller instances
of the problem. Back on the mathematical side, a recurrence equation describes the value
of a function in terms of its value for smaller arguments. These various incarnations of re-
cursion work together nicely. For example one might prove a recursive algorithm correct
using induction or analyze its running time using a recurrence equation.

In this lecture, we’ll learn how to solve a family of recurrence equations, called “linear
recurrences”, that frequently arise in computer science and other disciplines.

1 The Towers of Hanoi

In the Towers of Hanoi problem, there are three posts and seven disks of different sizes.
Each disk has a hole through the center so that it fits on a post. At the start, all seven disks
are on post #1 as shown below. The disks are arranged by size so that the smallest is on
top and the largest is on the bottom. The goal is to end up with all seven disks in the same
order, but on a different post. This is not trivial because of two restrictions. First, the only
permitted action is removing the top disk from a post and dropping it onto another post.
Second, a larger disk can never lie above a smaller disk on any post. (These rules imply,
for example, that it is no fair to pick up the whole stack of disks at once and then to drop
them all on another post!)

Post #1 Post #2 Post #3

It is not immediately clear that a solution to this problem exists; maybe the rules are so
stringent that the disks cannot all be moved to another post!
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One approach to this problem is to consider a simpler variant with only three disks.
We can quickly exhaust the possibilities of this simpler puzzle and find a 7-move solution
such as the one shown below. (The disks on each post are indicated by the numbers
immediately to the right. Larger numbers correspond to larger disks.)
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This problem was invented in 1883 by the French mathematician Edouard Lucas. In his
original account, there were 64 disks of solid gold. At the beginning of time, all 64 were
placed on a single post, and monks were assigned the task of moving them to another post
according to the rules described above. According to legend, when the monks complete
their task, the Tower will crumble and the world will end!

The questions we must answer are, “Given sufficient time, can the monks succeed?”
and if so, “How long until the world ends?” and, most importantly, “Will this happen
before the 6.042 final?”

1.1 Finding a Recurrence

The Towers of Hanoi problem can be solved recursively as follows. Let Tn be the min-
imum number of steps needed to move an n-disk tower from one post to another. For
example, a bit of experimentation shows that T1 = 1 and T2 = 3. For 3 disks, the solution
given above proves that T3 ≤ 7. We can generalize the approach used for 3 disks to the
following recursive algorithm for n disks.

Step 1. Apply this strategy recursively to move the top n − 1 disks from the first post to
the third post. This can be done in Tn−1 steps.

1
2
...
n

⇒

1
2
...

n n−1
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Step 2. Move the largest disk from the first post to the to the second post. This requires
just 1 step.

1
2
...

n n−1

⇒

1
2
...

n n−1

Step 3. Recursively move the n−1 disks on the third post over to the second post. Again,
Tn−1 steps are required.

1
2
...

n n−1

⇒

1
2
...
n

This algorithm shows that Tn, the number of steps required to move n disks to a dif-
ferent post, is at most 2Tn−1 + 1. We can use this fact to compute upper bounds on the
number of steps required for various numbers of disks:

T3 ≤ 2 · T2 + 1

= 7

T4 ≤ 2 · T3 + 1

≤ 15

The algorithm described above answers our first question: given sufficient time, the
monks will finish their task and end the world. (Which is a shame. After all that effort
they’d probably want to smack a few high-fives and go out for burgers and ice cream, but
nope— world’s over.)

1.2 A Lower Bound for Towers of Hanoi

We can not yet compute the exact number of steps that the monks need to move the 64
disks; we can only show an upper bound. Perhaps— having pondered the problem since
the beginning of time— the monks have devised a better algorithm.

In fact, there is no better algorithm, and here is why. At some step, the monks must
move the n-th disk from the first post to a different post. For this to happen, the n − 1
smaller disks must all be stacked out of the way on the only remaining post. Arranging
the n − 1 smaller disks this way requires at least Tn−1 moves. After the largest disk is
moved, at least another Tn−1 moves are required to pile the n− 1 smaller disks on top.



4 Recurrences

This argument shows that the number of steps required is at least 2Tn−1 + 1. Since we
gave an algorithm using exactly that number of steps, we now have a recurrence for Tn,
the number of moves required to complete the Tower of Hanoi problem with n disks:

T1 = 1

Tn = 2Tn−1 + 1 (for n ≥ 2)

We can use this recurrence to conclude that T2 = 3, T3 = 7, T4 = 15, . . ..

1.3 Guess-and-Verify

Computing T64 from the recurrence would require a lot of work. It would be nice to
have a closed form expression for Tn, so that we could quickly compute the number of
steps required to solve the Towers of Hanoi problem for any given number of disks. (For
example, we might want to know how much sooner the world would end if the monks
melted down one disk to purchase burgers and ice cream before the end of the world.)

There are several different methods for solving recurrences. The simplest method is to
guess the solution and then to verify that the guess is correct, usually with an induction
proof. This method is called guess-and-verify or “substitution”. As a basis for a good
guess, let’s tabulate Tn for small values of n:

n Tn

1 1
2 3
3 7
4 15
5 31
6 63

Based on this table, a natural guess is that Tn = 2n − 1.

Whenever you guess a solution to a recurrence, you should always verify it with a
proof by induction or by some other technique; after all, your guess might be wrong. (But
why bother to verify in this case? After all, if we’re wrong, its not the end of the. . . no,
let’s check.)

Claim. If:

T1 = 1

Tn = 2Tn−1 + 1 (for n ≥ 2)

then:
Tn = 2n − 1
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Proof. The proof is by induction on n. Let P (n) be the proposition that Tn = 2n − 1.

Base case: P (1) is true because T1 = 1 = 21 − 1.

Inductive step: Now we assume Tn = 2n − 1 to prove that Tn+1 = 2n+1 − 1, where n ≥ 1.

Tn+1 = 2Tn + 1

= 2(2n − 1) + 1

= 2n+1 − 1

The first equality is the recurrence relation, and the second equation follows by the as-
sumption P (n). The last step is simplification.

Our guess is now verified. This shows, for example, that the 7-disk puzzle will require
27 − 1 = 127 moves to complete. We can also now resolve our remaining questions about
the 64-disk puzzle. Since T64 = 264 − 1, the monks must complete more than 18 billion
billion steps before the world ends. Better study for the final.

2 Graduate Student Job Prospects

In a new academic field (say, computer science), there are only so many faculty positions
available in all the universities of the world. Initially, there were not enough qualified
candidates, and many positions were unfilled. But, over time, new graduates are filling
the positions, making job prospects for later computer science students ever more bleak.
Worse, the increasing number of professors are able to train an increasing number of
graduate students, causing positions to fill ever more rapidly. Eventually, the universities
will be saturated; new computer science graduates will have no chance at an academic
career. Our problem is to determine when the universities will stop hiring new computer
science faculty and, in particular, to answer the question, “Are the 6.042 TAs doomed?”
Here are the details of the problem.

• There are a total of N faculty positions available worldwide. This number never
changes due to budgetary constraints.

• Congress has passed a law forbidding forced retirement in universities, and no one
will retire voluntarily. (This is true and a problem!) In our analysis, therefore, once
a faculty position is filled, it never opens up again.

• Each year, every professor trains exactly 1 student who will go on to become a pro-
fessor the following year. The only exception is that first year professors do not
train students; they are too busy publishing, teaching, getting grants, and serving
on committees.

• In year 0, there are no computer science professors in the world. In year 1, the first
professor is hired.
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2.1 Finding a Recurrence

Ideally, we could find a formula for the number of professors in the world in a given year.
Then we could determine the year in which all N faculty positions are filled. Let f(n) be
the number of professors during year n. To develop some intuition about the problem,
we can compute values of this function for small n by hand.

f(0) = 0 No CS professors; the dark ages.
f(1) = 1 1 new professor; too busy to train a student.
f(2) = 1 1 old professor; now training a student.
f(3) = 2 1 new prof, 1 old prof; new prof too busy, old prof training.
f(4) = 3 1 new prof, 2 old profs; new prof too busy, both old profs training
f(5) = 5 2 new profs, 3 old profs
f(6) = 8 3 new profs, 5 old profs

In general, the number of professors in year n is equal to the number of professors last
year plus the number of new hires. The number of professors last year is f(n − 1). The
number of new hires is equal to the number of professors two years ago, f(n − 2), since
each of these professors trained a student last year. These observations give the following
recurrence equation for the number of professors:

f(0) = 0

f(1) = 1

f(n) = f(n− 1) + f(n− 2) (n ≥ 2)

This is the familiar Fibonacci recurrence. Looking back, the values of f(n) that we
computed by hand are indeed the first few Fibonacci numbers. Fibonacci numbers arise
in all sorts of applications. Fibonacci himself introduced the numbers in 1202 to study
rabbit reproduction. Fibonacci numbers also appear, oddly enough, in the spiral patterns
on the faces of sunflowers. And the input numbers that make Euclid’s GCD algorithm
require the greatest number of steps are consecutive Fibonacci numbers. So how big is
f(n) anyway? Of course, we could compute as many Fibonacci numbers as we like using
the recurrence, but it would be much nicer to find a closed form.

2.2 Solving the Recurrence

Solving the Fibonacci recurrence is easy because the recurrence is linear. (Well, “easy” in
the sense that you can learn the technique in one lecture; discovering it actually took six
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centuries.) A linear recurrence has the form:

f(n) = a1f(n− 1) + a2f(n− 2) + . . . + adf(n− d)

=
d∑

i=1

bif(n− i)

where a1, a2, . . . ad are constants. The order of the recurrence is d. For example, the Fi-
bonacci recurrence is order 2 and has coefficients a1 = a2 = 1. (Later on, we’ll slightly
expand the definition of a linear recurrence.)

For now, let’s try to solve just the Fibonacci recurrence; we’ll see how to solve general
linear recurrences later in the lecture. Our rule of thumb is that guess-and-verify is the
first method to apply to an unfamiliar recurrence. It turns out that for a linear recurrence,
an exponential solution is a good guess. However, since we know nothing beyond this,
our initial guess-and-erify attempt will really only be a “dry run”; that is, we will not
make an exact guess and will not verify it with a complete proof. Rather, the goal of this
first attempt is only to clarify the form of the solution.

Guess. f(n) = cxn

Here c and x are parameters introduced to improve our odds of having a correct guess;
in the verification step, we can pick values that make the proof work. To further improve
our odds, let’s neglect the boundary conditions, f(0) = 0 and f(1) = 1.

Verification. Plugging our guess into the recurrence f(n) = f(n− 1) + f(n− 2) gives:

cxn = cxn−1 + cxn−2

x2 = x + 1

x2 − x− 1 = 0

x =
1±

√
5

2

In the first step, we divide both sides of the equation by cxn−2. Then we rearrange terms
and find x with the quadratic formula.

This calculation suggests that the connstant c can be anything, but that x must be
(1±

√
5)/2. Evidently, there are two solutions to the recurrence:

f(n) = c

(
1 +

√
5

2

)n

or f(n) = c

(
1−

√
5

2

)n

In fact, any linear combination of these two solutions is also a solution. The following
theorem states that this is true in general for linear recurrences.

Theorem 1. If f(n) and g(n) are solutions to a linear recurrence (without boundary conditions),
then cf(n) + dg(n) is also a solution.
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Proof. Since f(n) and g(n) are both solutions, then:

f(n) =
d∑

i=1

aif(n− i)

g(n) =
d∑

i=1

aig(n− i)

Multiplying the first equation by c, the second by d, and summing gives:

cf(n) + dg(n) = c ·

(
d∑

i=1

aif(n− i)

)
+ d ·

(
d∑

i=1

aig(n− i)

)

=
d∑

i=1

ai

(
cf(n− i) + dg(n− i)

)
Thus, cf(n) + dg(n) is a solution as well.

This same phenomenon— that a linear combination of solutions is another solution—
also arises in differential equations and, consequently, many physical systems. In the
present case, the theorem implies that

f(n) = c1

(
1 +

√
5

2

)n

+ c2

(
1−

√
5

2

)n

is a solution to the Fibonacci recurrence without boundary conditions for all constants c1

and c2. All that remains is to choose these constants to obtain a solution consistent with
the boundary conditions, f(0) = 0 and f(1) = 1. From the first condition, we know:

f(0) = c1

(
1 +

√
5

2

)0

+ c2

(
1−

√
5

2

)0

= c1 + c2 = 0

From the second boundary condition, we have:

f(1) = c1

(
1 +

√
5

2

)1

+ c2

(
1−

√
5

2

)1

= 1

We now have two linear equations in two unknowns. The system of equations is not
degenerate, so there is a unique solution: c1 = 1/

√
5 and c2 = −1/

√
5. We’re done! We

have a complete solution to the Fibonacci recurrence with boundary conditions:

f(n) =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n
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This looks completely wrong! All Fibonacci numbers are integers, but this expression is
full of square roots of five! Amazingly, however, the square roots always cancel out. This
expression really does give the Fibonacci numbers if we plug in n = 0, 1, 2, . . .. It is easy
to see why no one stumbled across this solution for six centuries!

2.3 Job Prospects

Let’s return to the original question: how long until all N faculty positions are taken?

To answer this question, we must find the smallest n such that f(n) ≥ N ; that is, we
must determine the year n in which there are as many potential professors as university
positions. Graduates after year n will have to find other employment, e.g. shuffling
golden disks in an obscure monastic community for the next 1019 years.

Because f(n) has such a complicated form, it is hard to compute the right value of n
exactly. However, we can find an excellent approximate answer. Note that in the closed
form for Fibonacci numbers, the second term rapidly goes to zero:

f(n) =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

=
1√
5

(
1 +

√
5

2

)n

+ o(1)

This is because |(1 −
√

5)/2| = 0.618 . . . < 1, and a big power of a number less than 1 is
tiny.

From this approximation for f(n), we can estimate the year in which all faculty posi-
tions will be filled. That happens when:

f(n) ≈ 1√
5

(
1 +

√
5

2

)n

≥ N

Thus, all jobs are filled in about n years where:

n =
log(

√
5 N + o(1))

log(1+
√

5
2

)

= Θ(log N)

This makes sense, since the number of professors is increasing exponentially. For exam-
ple, N = 10, 000 jobs would all be taken in about n = 20.8 years. Your TAs don’t have a
moment to lose!

The solution to the Fibonacci recurrence has an interesting corollary. The number:

φ =

(
1 +

√
5

2

)
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is often called the “Golden Ratio”. We can write the dominant term in the closed form for
the n-th Fibonacci number in terms of the φ:

f(n) =
φn

√
5

+ o(1)

We’ve just shown that this expression involving irrational numbers is actually very close
to an integer for all large n— namely, the n-th Fibonacci number. This is just one of many
curious properties of the Golden Ratio.

3 General Linear Recurrences

The method we used to solve the Fibonacci recurrence can actually be used to solve any
linear recurrence. Recall that a recurrence is linear if it has the form:

f(n) = a1f(n− 1) + a2f(n− 2) + . . . + adf(n− d)

Substituting the guess f(n) = xn, as with the Fibonacci recurrence, gives:

xn = a1x
n−1 + a2x

n−2 + . . . + adx
n−d

xd = a1x
d−1 + a2x

d−2 + . . . + ad−1x + ad

Dividing the first equation by xn−d gives the second. This second equation is called the
characteristic equation of the recurrence. The characteristic equation can be read off very
quickly since the coefficients of the equation are the same as the coefficients of the recur-
rence.

The solutions to a linear recurrence are defined by the roots of the characteristic equa-
tion. Neglecting boundary conditions for the moment:

• If r is a nonrepeated root of the characteristic equation, then rn is a solution to the
recurrence.

• If r is a repeated root with multiplicity k, then

rn, nrn, n2rn, . . . , nk−1rn

are all solutions to the recurrence.

Futhermore, Theorem 1 implies that every linear combination of these solutions is also a
solution.

For example, suppose that the characteristic equation of a recurrence has roots r1, r2,
and r3 twice. These four roots imply four distinct solutions:

f(n) = rn
1 f(n) = rn

2 f(n) = rn
3 f(n) = nrn

3
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Thus, every linear combination

f(n) = a · rn
1 + b · rn

2 + c · rn
3 + d · nrn

3

is also a solution.

All that remains is to find a solution consistent with the boundary conditions by choos-
ing the constants appropriately. Each boundary condition implies a linear equation in-
volving these constants. So we can determine the constants by solving a system of linear
equations. For example, suppoose our boundary conditions were f(0) = 0, f(1) = 1,
f(2) = 4 and f(3) = 9. Then we would obtain four equations in four unknowns:

f(0) = 0 ⇒ a · r0
1 + b · r0

2 + c · r0
3 + d · 0r0

3 = 0

f(1) = 1 ⇒ a · r1
1 + b · r1

2 + c · r1
3 + d · 1r1

3 = 1

f(2) = 4 ⇒ a · r2
1 + b · r2

2 + c · r2
3 + d · 2r2

3 = 4

f(3) = 9 ⇒ a · r3
1 + b · r3

2 + c · r3
3 + d · 3r3

3 = 9

All the nasty rj
i things are actually just constants. Solving this system gives values for a, b,

c, and d that define a solution to the recurrence consistent with the boundary conditions.

3.1 An Example

Suppose that there is a type of plant that lives forever, but only reproduces during its first
year of life. How fast will the plant population grow? Notice that this is just the reverse
of the graduate student job problem where faculty “reproduce” in every year except the
first.

Let f(n) be the number of plants in year n. As boundary conditions, define f(0) = 0
and f(1) = 1. Now the plant population in year n is equal to the population from the year
before plus the number of new plants. The population from the year before is f(n − 1).
And the number of new plants this year is equal to the number of new plants last year,
which is f(n−1)−f(n−2). Putting these observations together, we can form a recurrence
equation for the plant population:

f(n) = f(n− 1) + (f(n− 1)− f(n− 2))

= 2f(n− 1)− f(n− 2)

The characteristic equation is x2 − 2x + 1 = 0, which has the single root x = 1 with
multiplicity 2. Therefore, the solution to the recurrence has the form:

f(n) = c1(1)
n + c2n(1)n

= c1 + c2n

The boundary conditions imply two linear equations in two unknowns:

f(0) = 0 ⇒ c1 + c2(0) = 0

f(1) = 1 ⇒ c1 + c2(1) = 1
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The solution to the linear system is c1 = 0, c2 = 1. Therefore, the solution to the recurrence
is:

f(n) = c1 + c2n

= 0 + (1)n

= n

The answer turns out to be very simple! In year n, there are exactly n plants. Of course,
we probably could have solved this problem more easily with guess-and-verify. But, as
the Fibonacci recurrence demonstrated, guessing is not always so easy.

4 Inhomogeneous Recurrences

We can now solve all recurrences of the form:

f(n) = a1f(n− 1) + a2f(n− 1) + . . . + adf(n− d)

Strictly speaking, this is the family of homogeneous linear recurrences. Adding an ex-
tra, arbitrary function g(n) on the right side gives the general form of an inhomogeneous
linear recurrence:

f(n) = a1f(n− 1) + a2f(n− 1) + . . . + adf(n− d) + g(n)

For example, adding +1 to the Fibonacci recurrence gives an inhomogeneous linear re-
currence:

f(n) = f(n− 1) + f(n− 2) + 1

Solving inhomogenous linear recurrences is neither very different nor very difficult.
We can divide the whole job into three steps.

1. Replace g(n) by 0 and solve the resulting homogeneous recurrence as before. (Ignore
boundary conditions for now; that is, do not solve for constants c1, c2, . . . , cd yet.)
The solution to the homogeneous recurrence is called the homogeneous solution.

2. Now restore g(n) and find a single solution to the recurrence, again ignoring bound-
ary conditions. This is called the particular solution. There are general methods for
finding particular solutions, but we advise you to use guess-and-verify. In a mo-
ment, we’ll explain how to guess wisely.

3. Add the homogeneous and particular solutions together to obtain the general solu-
tion. Now use the boundary conditions to determine constants by the usual method
of generating and solving a system of linear equations.

If you’ve studied differential equations, then all this probably sounds quite familiar.
If you haven’t, then— when you do get around to studying differential equations— they
should seem quite familiar.
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4.1 An Example

Let’s demonstrate the method for solving an inhomogenous linear recurrence on this ex-
ample:

f(1) = 1

f(n) = 4f(n− 1) + 3n

Step 1: Solve the Homogeneous Recurrence

The homogeneous recurrence is f(n) = 4f(n−1). The characteristic equation is x−4 = 0.
The only root is x = 4. Therefore, the homogeneous solution is f(n) = c4n.

Step 2: Find a Particular Solution

Now we must find a single solution to the full recurrence f(n) = 4f(n − 1) + 3n. Let’s
guess that there is a solution of the form d3n, where d is a constant. Substituting this guess
into the recurrence gives:

d3n = 4d3n−1 + 3n

3d = 4d + 3

d = −3

Evidently, f(n) = −3 · 3n = −3n+1 is a particular solution.

Step 3: Add Solutions and Find Constants

We now add the homogeneous solution and the particular solution to obtain the general
solution:

f(n) = c4n − 3n+1

The boundary condition gives the value of the constant c:

f(1) = 1 ⇒ c41 − 31+1 = 1

⇒ c =
5

2

Therefore, the solution to the recurrence is f(n) = 5
2
4n − 3n+1. Piece of cake!

Since we could easily have made a mistake, let’s check to make sure that our solution
at least works for n = 2. From the recurrence, f(2) = 4f(1) + 32 = 13. From our closed
form, f(2) = 5

2
42 − 33 = 40− 27 = 13. It looks right!
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4.2 How to Guess a Particular Solution

The hardest part of solving inhomogeneous recurrences is finding a particular solution.
This involves guessing, and you might guess wrong. However, some rules of thumb
make this job fairly easy most of the time.

• Generally, look for a particular solution with the same form as the inhomogeneous
term g(n).

• If g(n) is a constant, then guess a particular solution f(n) = c. If this doesn’t work,
try f(n) = bn + c, then f(n) = an2 + bn + c, etc.

• More generally, if g(n) is a polynomial, try a polynomial of the same degree, then a
polynomial of degree one higher, then two higher, etc. For example, if g(n) = 6n+5,
then try f(n) = bn + c and then f(n) = an2 + bn + c.

• If g(n) is an exponential, such as 3n, then first guess that f(n) = c3n. Failing that, try
f(n) = bn3n + c3n and then an23n + bn3n + c3n, etc.
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Short Guide to Solving Linear Recurrences

A linear recurrence is an equation

f(n) = a1f(n− 1) + a2f(n− 2) + . . . + adf(n− d)︸ ︷︷ ︸
homogeneous part

+g(n)︸ ︷︷ ︸
inhomogeneous part

together with boundary conditions such as f(0) = b0, f(1) = b1, etc.

1. Find the roots of the characteristic equation:

xn = a1x
n−1 + a2x

n−2 + . . . + ak

2. Write down the homogeneous solution. Each root generates one term and the homoge-
neous solution is the sum of these terms. A nonrepeated root r generates the term crr

n,
where cr is a constant to be determined later. A root r with multiplicity k generates the
terms:

cr1r
n, cr2nrn, cr3n

2rn, . . . , crk
nk−1rn

where cr1 , . . . , crk
are constants to be determined later.

3. Find a particular solution. This is a solution to the full recurrence that need not be con-
sistent with the boundary conditions. Use guess and verify. If g(n) is a polynomial,
try a polynomial of the same degree, then a polynomial of degree one higher, then two
higher, etc. For example, if g(n) = n, then try f(n) = bn+c and then f(n) = an2+bn+c.
If g(n) is an exponential, such as 3n, then first guess that f(n) = c3n. Failing that, try
f(n) = bn3n + c3n and then an23n + bn3n + c3n, etc.

4. Form the general solution, which is the sum of the homogeneous solution and the partic-
ular solution. Here is a typical general solution:

f(n) = c2n + d(−1)n︸ ︷︷ ︸
homogeneous solution

+ 3n + 1︸ ︷︷ ︸
particular solution

5. Substitute the boundary conditions into the general solution. Each boundary condition
gives a linear equation in the unknown constants. For example, substituting f(1) = 2
into the general solution above gives:

2 = c · 21 + d · (−1)1 + 3 · 1 + 1
⇒ −2 = 2c− d

Determine the values of these constants by solving the resulting system of linear equa-
tions.


	The Towers of Hanoi
	Finding a Recurrence
	A Lower Bound for Towers of Hanoi
	Guess-and-Verify

	Graduate Student Job Prospects
	Finding a Recurrence
	Solving the Recurrence
	Job Prospects

	General Linear Recurrences
	An Example

	Inhomogeneous Recurrences
	An Example
	How to Guess a Particular Solution


