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Expected Value I

The expectation or expected value of a random variable is a single number that tells
you a lot about the behavior of the variable. Roughly, the expectation is the average value,
where each value is weighted according to the probability that it comes up. Formally, the
expected value of a random variable R defined on a sample space S is:

Ex (R) =
∑
w∈S

R(w) Pr (w)

To appreciate its signficance, suppose S is the set of students in a class, and we select a
student uniformly at random. Let R be the selected student’s exam score. Then Ex (R) is
just the class average— the first thing everyone want to know after getting their test back!
In the same way, expectation is usually the first thing one wants to determine about any
random variable.

Let’s work through an example. Let R be the number that comes up on a fair, six-sided
die. Then the expected value of R is:

Ex (R) =
6∑

k=1

k

(
1

6

)
= 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6

=
7

2

This calculation shows that the name “expected value” is a little misleading; the random
variable might never actually take on that value. You can’t roll a 31

2
on an ordinary die!

1 Betting on Coins

Dan, Eric, and Nick decide to play a fun game. Each player puts $2 on the table and
secretly writes down either “heads” or “tails”. Then one of them tosses a fair coin. The
$6 on the table is divided evenly among the players who correctly predicted the outcome
of the coin toss. If everyone guessed incorrectly, then everyone takes their money back.
After many repetitions of this game, Dan has lost a lot of money— more than can be
explained by bad luck. What’s going on?

A tree diagram for this problem is worked out below, under the assumptions that
everyone guesses correctly with probability 1/2 and everyone is correct independently.
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In the “payoff” column, we’re accounting for the fact that Dan has to put in $2 just to play.
So, for example, if he guesses correctly and Eric and Nick are wrong, then he takes all $6
on the table, but his net profit is only $4. Working from the tree diagram, Dan’s expected
payoff is:

Ex (payoff) = 0 · 1

8
+ 1 · 1

8
+ 1 · 1

8
+ 4 · 1

8
+ (−2) · 1

8
+ (−2) · 1

8
+ (−2) · 1

8
+ 0 · 1

8
= 0

So the game perfectly fair! Over time, he should neither win nor lose money.

The trick is that Nick and Eric are collaborating; in particular, they always make oppo-
site guesses. So our assumption everyone is correct independently is wrong; actually the
events that Nick is correct and Eric is correct are mutually exclusive! As a result, Dan can
never win all the money on the table. When he guesses correctly, he always has to split
his winnings with someone else. This lowers his overall expectation, as the corrected tree
diagram below shows:
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From this revised tree diagram, we can work out Dan’s actual expected payoff:

Ex (payoff) = 0 · 0 + 1 · 1

4
+ 1 · 1

4
+ 4 · 0 + (−2) · 0 + (−2) · 1

4
+ (−2) · 1

4
+ 0 · 0

= −1

2

So he loses an average of a half-dollar per game!

Similar opportunities for subtle cheating come up in many betting games. For exam-
ple, a group of friends once organized a football pool where each participant would guess
the outcome of every game each week relative to the spread. This may mean nothing to
you, but the upshot is that everyone was effectively betting on the outcomes of 12 or 13
coin tosses each week. The person who correctly predicts the most coin tosses won a lot of
money. The organizer, thinking in terms of the first tree diagram, swore up and down that
there was no way to get an unfair “edge”. But actually the number of participants was
small enough that just two players betting oppositely could gain a substantial advantage!

Another example involves a former MIT professor of statistics, Herman Chernoff.
State lotteries are the worst gambling games around because the state pays out only a
fraction of the money it takes in. But Chernoff figured out a way to win! Here are rules
for a typical lottery:

• All players pay $1 to play and select 4 numbers from 1 to 36.

• The state draws 4 numbers from 1 to 36 uniformly at random.
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• The state divides 1/2 the money collected among the people who guessed correctly
and spends the other half repairing the Big Dig.

This is a lot like our betting game, except that there are more players and more choices.
Chernoff discovered that a small set of numbers was selected by a large fraction of the
population— apparently many people think the same way. It was as if the players were
collaborating to lose! If any one of them guessed correctly, then they’d have to split the
pot with many other players. By selecting numbers uniformly at random, Chernoff was
unlikely to get one of these favored sequences. So if he won, he’d likely get the whole
pot! By analyzing actual state lottery data, he determined that he could win an average
of 7 cents on the dollar this way!

2 Equivalent Definitions of Expectation

There are some other ways of writing the definition of expectation. Sometimes using one
of these other formulations can make computing an expectation a lot easier. One option
is to group together all outcomes on which the random variable takes on the same value.

Theorem 1.
Ex (R) =

∑
x∈ range(R)

x · Pr (R = x)

Proof. We’ll transform the left side into the right. Let [R = x] be the event that R = x.

Ex (R) =
∑
w∈S

R(w) Pr (w)

=
∑

x∈ range(R)

∑
w∈[R=x]

R(w) Pr (w)

=
∑

x∈ range(R)

∑
w∈[R=x]

x Pr (w)

=
∑

x∈ range(R)

x ·
∑

w∈[R=x]

Pr (w)


=

∑
x∈ range(R)

x · Pr (R = x)

On the second line, we break the single sum into two. The outer sum runs over all possible
values x that the random variable takes on, and the inner sum runs over all outcomes
taking on that value. Thus, we’re still summing over every outcome in the sample space
exactly once. On the last line, we use the definition of the probability of the event [R =
x].
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Corollary 2. If R is a natural-valued random variable, then:

Ex (R) =
∞∑
i=0

i · Pr (R = i)

There is another way to write the expected value of a random variable that takes on
values only in the natural numbers, N = {0, 1, 2, . . .}.

Theorem 3. If R is a natural-valued random variable, then:

Ex (R) =
∞∑
i=0

Pr (R > i)

Proof. Consider the sum:

Pr (R = 1) + Pr (R = 2) + Pr (R = 3) + · · ·
+ Pr (R = 2) + Pr (R = 3) + · · ·

+ Pr (R = 3) + · · ·
+ · · ·

The columns sum to 1 · Pr (R = 1), 2 · Pr (R = 2), 3 · Pr (R = 3), etc. Thus, the whole sum
is equal to:

∞∑
i=0

i · Pr (R = i) = Ex (R)

Here, we’re using Corollary 2. On the other hand, the rows sum to Pr (R > 0), Pr (R > 1),
Pr (R > 2), etc. Thus, the whole sum is also equal to:

∞∑
i=0

Pr (R > i)

These two expressions for the whole sum must be equal, which proves the theorem.

2.1 Mean Time to Failure

Let’s look at a problem where one of these alternative definitions of expected value is
particularly helpful. A computer program crashes at the end of each hour of use with
probability p, if it has not crashed already. What is the expected time until the program
crashes?

If we let R be the number of hours until the crash, then the answer to our problem is
Ex (R). This is a natural-valued variable, so we can use the formula:

Ex (R) =
∞∑
i=0

Pr (R > i)
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We have R > i only if the system remains stable after i opportunities to crash, which
happens with probability (1 − p)i. Plugging this into the formula above gives:

Ex (R) =
∞∑
i=0

(1 − p)i

=
1

1 − (1 − p)

=
1

p

The closed form on the second line comes from the formula for the sum of an infinite
geometric series where the ratio of consecutive terms is 1 − p.

So, for example, if there is a 1% chance that the program crashes at the end of each
hour, then the expected time until the program crashes is 1/0.01 = 100 hours. The gen-
eral principle here is well-worth remembering: if a system fails at each time step with
probability p, then the expected number of steps up to the first failure is 1/p.

2.2 Making a Baby Girl

A couple really wants to have a baby girl. There is a 50% chance that each child they have
is a girl, and the genders of their children are mutually independent. If the couple insists
on having children until they get a girl, then how many baby boys should they expect
first?

This is really a variant of the previous problem. The question, “How many hours until
the program crashes?” is mathematically the same as the question, “How many children
must the couple have until they get a girl?” In this case, a crash corresponds to having a
girl, so we should set p = 1

2
. By the preceding analysis, the couple should expect a baby

girl after having 1/p = 2 children. Since the last of these will be the girl, they should
expect just 1 boy.

3 Linearity of Expectation

Expected values obey a wonderful rule called linearity of expectation. This says that the
expectation of a sum is the sum of the expectationas.

Theorem 4 (Linearity of Expectation). For every pair of random variables R1 and R2:

Ex (R1 + R2) = Ex (R1) + Ex (R2)
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Proof. Let S be the sample space.

Ex (R1 + R2) =
∑
w∈S

(R1(w) + R2(w)) · Pr (w)

=
∑
w∈S

R1(w) · Pr (w) +
∑
w∈S

R2(w) · Pr (w)

= Ex (R1) + Ex (R2)

Linearity of expectation generalizes to any finite collection of random variables by
induction:

Corollary 5. For any random variables R1, R2, . . . , Rk,

Ex (R1 + R2 + · · · + Rk) = Ex (R1) + Ex (R2) + · · · + Ex (Rk)

The reason linearity of expectation is so wonderful is that, unlike many other probabil-
ity rules, the random variables are not required to be independent. This probably sounds like
a “yeah, whatever” technicality right now. But when you give an analysis using linearity
of expectation, someone will almost invariably say, “No, you’re wrong. There are all sorts
of complicated dependencies here that you’re ignoring.” But that’s the magic of linearity
of expectation: you can ignore such dependencies!

3.1 Expected Value of Two Dice

What is the expected value of the sum of two fair dice?

Let the random variable R1 be the number on the first die, and let R2 be the number
on the second die. At the start of these Notes, we showed that the expected value of one
die is 31

2
. We can find the expected value of the sum using linearity of expectation:

Ex (R1 + R2) = Ex (R1) + Ex (R2)

= 3
1

2
+ 3

1

2
= 7

Notice that we did not have to assume that the two dice were independent. The expected
sum of two dice is 7, even if they are glued together! (This is provided that gluing some-
how does not change weights to make the individual dice unfair.)

Proving that the expected sum is 7 with a tree diagram would be hard; there are 36
cases. And if we did not assume that the dice were independent, the job would be a
nightmare!
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3.2 The Hat-Check Problem

There is a dinner party where n men check their hats. The hats are mixed up during
dinner, so that afterward each man receives a random hat. In particular, each man gets
his own hat with probability 1/n. What is the expected number of men who get their own
hat?

Without linearity of expectation, this would be a very difficult question to answer. We
might try the following. Let the random variable R be the number of men that get their
own hat. We want to compute Ex (R). By the definition of expectation, we have:

Ex (R) =
∞∑

k=0

k · Pr(R = k)

Now we’re in trouble, because evaluating Pr(R = k) is a mess and we then need to
substitute this mess into a summation. Furthermore, to have any hope, we would need
to fix the probability of each permutation of the hats. For example, we might assume that
all permutations of hats are equally likely.

Now let’s try to use linearity of expectation. As before, let the random variable R be
the number of men that get their own hat. The trick is to express R as a sum of indicator
variables. In particular, let Ri be an indicator for the event that the ith man gets his own
hat. That is, Ri = 1 is the event that he gets his own hat, and Ri = 0 is the event that
he gets the wrong hat. The number of men that get their own hat is the sum of these
indicators:

R = R1 + R2 + · · · + Rn

These indicator variables are not mutually independent. For example, if n− 1 men all get
their own hats, then the last man is certain to receive his own hat. But, since we plan to
use linearity of expectation, we don’t have worry about independence!

Let’s take the expected value of both sides of the equation above and apply linearity
of expectation:

Ex (R) = Ex (R1 + R2 + · · · + Rn)

= Ex (R1) + Ex (R2) + · · · + Ex (Rn)

All that remains is to compute the expected value of the indicator variables Ri. We’ll use
an elementary fact that is worth remembering in its own right:

Fact 1. The expected value of an indicator random variable is the probability that the indicator is
1. In symbols:

Ex (I) = Pr (I = 1)

Proof.

Ex (I) = 1 · Pr (I = 1) + 0 · Pr (I = 0)

= Pr (I = 1)
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So now we need only compute Pr(Ri = 1), which is the probability that the ith man
gets his own hat. Since every man is as likely to get one hat as another, this is just 1/n.
Putting all this together, we have:

Ex (R) = Ex (R1) + Ex (R2) + · · · + Ex (Rn)

= Pr (R1 = 1) + Pr (R2 = 1) + · · · + Pr (Rn = 1)

= n · 1

n
= 1.

So we should expect 1 man to get his own hat back on average!

Notice that we did not assume that all permutations of hats are equally likely or even
that all permutations are possible. We only needed to know that each man received his
own hat with probability 1/n. This makes our solution very general, as the next example
shows.

3.3 The Chinese Appetizer Problem

There are n people at a circular table in a Chinese restaurant. On the table, there are n
different appetizers arranged on a big Lazy Susan. Each person starts munching on the
appetizer directly in front of him or her. Then someone spins the Lazy Susan so that
everyone is faced with a random appetizer. What is the expected number of people that
end up with the appetizer that they had originally?

This is just a special case of the hat-check problem, with appetizers in place of hats.
In the hat-check problem, we assumed only that each man received his own hat with
probability 1/n. Beyond that, we made no assumptions about how the hats could be
permuted. This problem is a special case because we happen to know that appetizers are
cyclically shifted relative to their initial position. This means that either everyone gets
their original appetizer back, or no one does. But our previous analysis still holds: the
expected number of people that get their own appetizer back is 1.
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