
6.042/18.062J Mathematics for Computer Science September 28, 2004
Srini Devadas and Eric Lehman Lecture Notes

Graph Theory

1 Introduction

Informally, a graph is a bunch of dots connected by lines. Here is an example of a graph:
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Sadly, this definition is not precise enough for mathematical discussion. Formally, a
graph is a pair of sets (V, E), where:

• V is a nonempty set whose elements are called vertices.

• E is a collection of two-element subsets of V called edges.

The vertices correspond to the dots in the picture, and the edges correspond to the lines.
Thus, the dots-and-lines diagram above is a pictorial representation of the graph (V, E)
where:

V = {A, B, C,D, E, F, G, H, I}
E = {{A, B} , {A, C} , {B, D} , {C, D} , {C, E} , {E, F} , {E, G} , {H, I}} .

1.1 Definitions

A nuisance in first learning graph theory is that there are so many definitions. They all
correspond to intuitive ideas, but can take a while to absorb. Some ideas have multi-
ple names. For example, graphs are sometimes called networks, vertices are sometimes
called nodes, and edges are sometimes called arcs. Even worse, no one can agree on the
exact meanings of terms. For example, in our definition, every graph must have at least
one vertex. However, other authors permit graphs with no vertices. (The graph with
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no vertices is the single, stupid counterexample to many would-be theorems— so we’re
banning it!) This is typical; everyone agrees more-or-less what each term means, but dis-
agrees about weird special cases. So do not be alarmed if definitions here differ subtly
from definitions you see elsewhere. Usually, these differences do not matter.

Hereafter, we use A—B to denote an edge between vertices A and B rather than the set
notation {A, B}. Note that A—B and B—A are the same edge, just as {A, B} and {B, A}
are the same set.

Two vertices in a graph are said to be adjacent if they are joined by an edge, and an
edge is said to be incident to the vertices it joins. The number of edges incident to a vertex
is called the degree of the vertex. For example, in the graph above, A is adjacent to B and
B is adjacent to D, and the edge A—C is incident to vertices A and C. Vertex H has degree
1, D has degree 2, and E has degree 3.

Deleting some vertices or edges from a graph leaves a subgraph. Formally, a subgraph
of G = (V, E) is a graph G′ = (V ′, E ′) where V ′ is a nonempty subset of V and E ′ is a
subset of E. Since a subgraph is itself a graph, the endpoints of every edge in E ′ must be
vertices in V ′.

1.2 Sex in America

A 1994 University of Chicago study entitled The Social Organization of Sexuality found that
on average men have 74% more opposite-gender partners than women.

Let’s recast this observation in graph theoretic terms. Let G = (V, E) be a graph where
the set of vertices V consists of everyone in America. Now each vertex either represents
either a man or a woman, so we can partition V into two subsets: M , which contains all
the male vertices, and W , which contains all the female vertices. Let’s draw all the M
vertices on the left and the W vertices on the right:

M W

Now, without getting into a lot of specifics, sometimes an edge appears between an M vertex
and a W vertex:
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M W

Since we’re only considering opposite-gender relationships, every edge connects an M
vertex on the left to a W vertex on the right. So the sum of the degrees of the M vertices
must equal the sum of the degrees of the W vertices:∑

x∈M

deg(x) =
∑
y∈W

deg(y)

Now suppose we divide both sides of this equation by the product of the sizes of the two
sets, |M | · |W |: (∑

x∈M deg(x)

|M |

)
· 1

|W |
=

(∑
y∈W deg(y)

|W |

)
· 1

|M |

The terms above in parentheses are the average degree of an M vertex and the average degree
of a W vertex. So we know:

Avg. deg in M

|W |
=

Avg. deg in W

|M |

Avg. deg in M =
|W |
|M |

· Avg. deg in W

Now the Census Bureau reports that there are slightly more women than men in Amer-
ica; in particular |W | / |M | is about 1.035. So— assuming the Census Bureau is correct—
we’ve just proved that the University of Chicago study got bad data! On average, men
have 3.5% more opposite-gender partners. Furthermore, this is totally unaffected by dif-
ferences in sexual practices between men and women; rather, it is completely determined
by the relative number of men and women!

1.3 Graph Variations

There are many variations on the basic notion of a graph. Three particularly common
variations are described below. In a multigraph, there may be more than one edge be-
tween a pair of vertices. Here is an example:
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The edges in a directed graph are arrows pointing to one endpoint or the other. Here
is an example:

Directed graphs are often called digraphs. We denote an edge from vertex A to vertex
B in a digraph by A −→ B. Formally, the edges in a directed graph are ordered pairs
of vertices rather than sets of two vertices. The number of edges directed into a vertex
is called the in-degree of the vertex, and the number of edged directed out is called the
out-degree.

One can also allow self-loops, edges with both endpoints at one vertex. Here is an
example of a graph with self-loops:

Combinations of these variations are also possible; for example, one could work with
directed multigraphs with self-loops.

Except where stated otherwise, the word “graph” in this course refers to a graph without mul-
tiple edges, directed edges, or self-loops.
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1.4 Applications of Graphs

Graphs are the most useful mathematical objects in computer science. You can model
an enormous number of real-world systems and phenomena using graphs. Once you’ve
created such a model, you can tap the vast store of theorems about graphs to gain insight
into the system you’re modeling. Here are some practical situations where graphs arise:

Data Structures Each vertex represents a data object. There is a directed edge from one
object to another if the first contains a pointer or reference to the second.

Attraction Each vertex represents a person, and each edge represents a romantic attrac-
tion. The graph could be directed to model the unfortunate asymmetries.

Airline Connections Each vertex represents an airport. If there is a direct flight be-
tween two airports, then there is an edge between the corresponding vertices. These
graphs often appear in airline magazines.

The Web Each vertex represents a web page. Directed edges between vertices represent
hyperlinks.

People often put numbers on the edges of a graph, put colors on the vertices, or add
other ornaments that capture additional aspects of the phenomenon being modeled. For
example, a graph of airline connections might have numbers on the edges to indicate the
duration of the corresponding flight. The vertices in the attraction graph might be colored
to indicate the person’s gender.

1.5 Some Common Graphs

Some graphs come up so frequently that they have names. The complete graph on n
vertices, also called Kn, has an edge between every pair of vertices. Here is K5:

The empty graph has no edges at all. Here is the empty graph on 5 vertices:
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Here is a path with 5 vertices:

And here is a cycle with 5 vertices, which is typically denoted C5:

Paths and cycles are going to be particularly important, so let’s define them precisely.
A path is a graph P = (V, E) of the form

V = {v1, v2, . . . , vn} E = {v1—v2, v2—v3, . . . , vn−1—vn}

where n ≥ 1 and vertices v1, . . . , vn are all distinct. Vertices v1 and vn are the endpoints of
the path. Note that a path may consist of a single vertex, in which case both endpoints are
the same. We’ll often say that there is a path from u to v in a graph G; this is a shorthand
for saying that a path with endpoints u and v is a subgraph of G.

Similarly, a cycle is a graph C = (V, E) of the form

V = {v1, v2, . . . , vn} E = {v1—v2, v2—v3, . . . , vn−1—vn, vn—v1}

where n ≥ 3 and v1, . . . , vn are all distinct. The length of a path or cycle is the number
of edges it contains. For example, a path with 5 vertices has length 4, but a cycle with
5 vertices has length 5.
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1.6 Isomorphism

Two graphs that look the same might actually be different in a formal sense. For example,
the two graphs below are both cycles with 4 vertices:

A B

CD

1 2

34

But one graph has vertex set {A, B, C,D} while the other has vertex set {1, 2, 3, 4}.
If so, then the graphs are different mathematical objects, strictly speaking. But this is a
frustrating distinction; the graphs look the same!

Fortunately, we can neatly capture the idea of “looks the same” and use that as our
main notion of equivalence between graphs. Graphs G1 and G2 are isomorphic if there
exists a one-to-one correspondence between vertices in G1 and vertices in G2 such that
there is an edge between two vertices in G1 if and only if there is an edge between the two
corresponding vertices in G2. For example, take the following correspondence between
vertices in the two graphs above:

A corresponds to 1 B corresponds to 2
D corresponds to 4 C corresponds to 3.

Now there is an edge between two vertices in the graph on the left if and only if there is
an edge between the two corresponding vertices in the graph on the right. Therefore, the
two graphs are isomorphic. The correspondence itself is called an isomorphism.

Two isomorphic graphs may be drawn to look quite different. For example, here are
two different ways of drawing C5:

Isomorphic graphs share a great many properties, such as the number of vertices,
number of edges, and the pattern of vertex degrees. Thus, two graphs can be proved
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nonisomorphic by identifying some property that one possesses that the other does not.
For example, if one graph has two vertices of degree 5 and another has three vertices of
degree 5, then the graphs can not be isomorphic.

2 Connectivity

In the diagram below, the graph on the left has two pieces, while the graph on the right
has just one.

Let’s put this observation in rigorous terms. A graph is connected if for every pair
of vertices u and v, the graph contains a path with endpoints u and v as a subgraph.
The graph on the left is not connected because there is no path from any of the top three
vertices to either of the bottom two vertices. However, the graph on the right is connected,
because there is a path between every pair of vertices.

A maximal, connected subgraph is called a connected component. (By “maximal”, we
mean that including any additional vertices would make the subgraph disconnected.)
The graph on the left has two connected components, the triangle and the single edge.
The graph on the right is entirely connected and thus has a single connected component.

2.1 A Simple Connectivity Theorem

The following theorem says that a graph with few edges must have many connected
components.

Theorem 1. Every graph G = (V, E) has at least |V | − |E| connected components.

Proof. We use induction on the number of edges. Let P (n) be the proposition that every
graph G = (V, E) with |E| = n has at least |V | − n connected components.

Base case: In a graph with 0 edges, each vertex is itself a connected component, and so
there are exactly |V | − 0 = |V | connected components.

Inductive step: Now we assume that the induction hypothesis holds for every n-edge
graph in order to prove that it holds for every (n + 1)-edge graph, where n ≥ 0. Con-
sider a graph G = (V, E) with n + 1 edges. Remove an arbitrary edge u—v and call the
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resulting graph G′. By the induction assumption, G′ has at least |V | − n connected com-
ponents. Now add back the edge u—v to obtain the original graph G. If u and v were in
the same connected component of G′, then G has the same number of connected compo-
nents as G′, which is at least |V | − n. Otherwise, if u and v were in different connected
components of G′, then these two components are merged into one in G, but all other
components remain. Therefore, G has at least |V | − n − 1 = |V | − (n + 1) connected
components.

The theorem follows by induction.

Corollary 2. Every connected graph with n vertices has at least n− 1 edges.

A couple points about the proof of Theorem 1 are worth noting. First, notice that we
used induction on the number of edges in the graph. This is very common in proofs
involving graphs, and so is induction on the number of vertices. When you’re presented
with a graph problem, these two approachs should be among the first you consider. Don’t
try induction on other variables that crop up in the problem unless these two strategies
seem hopeless.

The second point is more subtle. Notice that in the inductive step, we took an arbitrary
(n + 1)-edge graph, threw out an edge so that we could apply the induction assumption,
and then put the edge back. You’ll see this shrink-down, grow-back process very often
in the inductive steps of proofs related to graphs. This might seem like needless effort;
why not start with an n-edge graph and add one more to get an (n + 1)-edge graph? That
would work fine in this case, but opens the door to a very nasty logical error in similar
arguments. (You’ll see an example in recitation.) Always use shrink-down, grow-back
arguments, and you’ll never fall into this trap.

2.2 Distance and Diameter

The distance between two vertices in a graph is the length of the shortest path between
them. For example, the distance between two vertices in a graph of airline connections is
the minimum number of flights required to travel between two cities.

A

B

C

D E

F G
H
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In this graph, the distance between C and H is 2, the distance between G and C is 3,
and the distance between A and itself is 0. If there is no path between two vertices, then
the distance between them is said to be “infinity”.

The diameter of a graph is the distance between the two vertices that are farthest apart.
The diameter of the graph above is 5. The most-distant vertices are A and G, which are at
distance 5 from one another.

2.2.1 Six Degrees of Separation

There is an old claim that the world has only “six degrees of separation”. In other words,
if you pick any two people on the planet— say a hermit in Montana and a random per-
son off the street in Beijing— then the hermit knows someone who knows someone who
knows someone who knows the Chinese pedestrian, where the word “knows” appears at
most six times.

We can recast this in graph-theoretic terms. Consider a graph where the vertices are
all the people on the planet, and there is an edge between two people if and only if they
know each other. Then the “six degrees of separation” claim amounts to the assertion that
the diameter of this graph is at most 6.

There is little hope of proving or disproving the claim, since people are constantly be-
ing born, meeting one another, and dying and no one can keep track of who-knows-who.
However, precise data does exist for something similar. The University of Virginia main-
tains the Oracle of Bacon website. This is based on an “acting graph” where the vertices
are actors and actresses, and there is an edge between two performers if they appeared in
a movie together. The website reports that everyone is within distance 8 of Kevin Bacon.
(This excludes a few actors who are completely disconnected.) This allows us to at least
obtain an upper bound on the diameter of the acting graph.

Theorem 3. Let v be an arbitrary vertex in a graph G. If every vertex is within distance d of v,
then the diameter of the graph is at most 2d.

Proof. Let x and y be arbitrary vertices in the graph. Then there exists a path of length at
most d from x to v, and there exists a path of length at most d from v to y.

x
y

v

z

Let z be the vertex that lies on both the x-to-v and v-to-y paths and is closest to x. (We
know that such a vertex exists, since z could be v, at least.) Joining the x-to-z segment to
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the z-to-y segment gives a path from x to y of length at most 2d. Therefore, every vertex
is within distance 2d of every other.

Data elsewhere on the Oracle of Bacon site shows that the diameter of the acting graph
is at least 15, so the upper bound isn’t far off.

3 Traversing a Graph

Can you walk every hallway in the Museum of Fine Arts exactly once? If we represent
hallways and intersections with edges and vertices, then this reduces to a question about
graphs. For example, could you visit every hallway exactly once in a museum with this
floorplan?

3.1 Euler Tours and Hamiltonian Cycles

A walk in a graph G is an alternating sequence of vertices and edges of the form:

v0, v0—v1, v1, v1—v2, v2, . . . , vn−1, vn−1—vn, vn

If v0 = vn, then the walk is closed. Walks are similar to paths. However, a walk can cross
itself, traverse the same edge multiple times, etc. There is a walk between two vertices if
and only if there is a path between the vertices.

The entire field of graph theory began when Euler asked whether the seven bridges of
Königsberg could all be traversed exactly once— essentially the same question we asked
about the Museum of Fine Arts. In his honor, an Euler walk is a walk that contains every
edge in a graph exactly once. Similarly, an Euler tour is an Euler walk that starts and
finishes at the same vertex; that is, v0 = vn. Graphs with Euler tours and Euler walks both
have simple characterizations.

Theorem 4. A connected graph has an Euler tour if and only if every vertex has even degree.
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Proof. If a graph has an Euler tour, then every vertex must have even degree; in particular,
a vertex visited k times on an Euler tour must have degree 2k.

Now suppose every vertex in graph G has even degree. Let W be the longest walk in
G that traverses every edge at most once:

W = v0, v0—v1, v1, v1—v2, v2, . . . , vn−1, vn−1—vn, vn

The walk W must traverse every edge incident to vn; otherwise, the walk could be ex-
tended. In particular, the walk traverses two of these edges each time it passes through vn

and traverses vn−1—vn at the end of the walk. This accounts for an odd number of edges,
but the degree of vn is even by assumption. Therefore, the walk must also begin at vn; that
is, v0 = vn.

Suppose that W is not an Euler tour. Because G is a connected graph, we can find an
edge not in W but incident to some vertex in W . Call this edge u—vi. But then we can
construct a longer walk:

u, u—vi, vi, vi—vi+1, . . . , vn−1—vn, vn, v0—v1, . . . , vi−1—vi, vi

This contradicts the definition of W , so W must be an Euler tour after all.

Corollary 5. A connected graph has an Euler walk if and only if either 0 or 2 vertices have odd
degree.

Hamiltonian cycles are the unruly cousins of Euler tours. A Hamiltonian cycle is
walk that starts and ends at the same vertex and visits every vertex in a graph exactly
once. There is no simple characterization of all graphs with a Hamiltonian cycle. (In fact,
determining whether a given graph has a Hamiltonian cycle is “NP-complete”.)

3.2 Tournament Rankings

Suppose that n players compete in a round-robin tournament. Thus, for every pair of
players u and v, either u beats v or else v beats u. Interpreting the results of a round-robin
tournament can be problematic. There might be all sorts of cycles where x beat y, y beat
z, yet z beat x. Graph theory provides at least a partial solution to this problem.

The results of a round-robin tournament can be represented with a tournament graph.
This is a directed graph in which the vertices represent players and the edges indicate the
outcomes of games. In particular, an edge from u to v indicates that player u defeated
player v. In a round-robin tournament, every pair of players has a match. Thus, in a
tournament graph there is either an edge from u to v or an edge from v to u for every pair
of vertices u and v. Here is an example of a tournament graph:
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D

The notions of walks, Euler tours, and Hamiltonian cycles all carry over naturally
to directed graphs. A directed walk is an alternating sequence of vertices and directed
edges:

v0, v0−→v1, v1, v1−→v2, v2, . . . , vn−1, vn−1−→vn, vn

A directed Hamiltonian path is a directed walk that visits every vertex exactly once.

We’re going to prove that in every round-robin tournament, there exists a ranking
of the players such that each player lost to the player ranked one position higher. For
example, in the tournament above, the ranking

A > B > D > E > C

satisfies this criterion, because B lost to A, D lost to B, E lost to D and C lost to E. In graph
terms, proving the existence of such a ranking amounts to proving that every tournament
graph has a Hamiltonian path.

Theorem 6. Every tournament graph contains a directed Hamiltonian path.

Proof. We use strong induction. Let P (n) be the proposition that every tournament graph
with n vertices contains a directed Hamiltonian path.

Base case. P (1) is trivially true; every graph with a single vertex has a Hamiltonian path
consisting of only that vertex.

Inductive step. For n ≥ 1, we assume that P (1), . . . , P (n) are all true and prove P (n + 1).
Consider a tournament with n + 1 players. Select one vertex v arbitrarily. Every other
vertex in the tournament either has an edge to vertex v or an edge from vertex v. Thus, we
can partition the remaining vertices into two corresponding sets, T and F , each containing
at most n vertices.
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F

T

v

The vertices in T together with the edges that join them form a smaller tournament. Thus,
by strong induction, there is a Hamiltonian path within T . Similarly, there is a Hamilto-
nian path within the tournament on the vertices in F . Joining the path in T to the vertex v
followed by the path in F gives a Hamiltonian path through the whole tournament. (As
special cases, if T or F is empty, then so is the corresponding portion of the path.)

The ranking defined by a Hamiltonian path is not entirely satisfactory. In the exam-
ple tournament, notice that the lowest-ranked player (C) actually defeated the highest-
ranked player (A)!

4 Adjacency Matrices

A graph can be represented by an adjacency matrix. In particular, if a graph has vertices
v1, . . . , vn, then the adjacency matrix is n × n. The entry in row i, column j is 1 if there
is an edge vi—vj and is 0 if there is no such edge. For example, here is a graph and its
adjacency matrix:

v4

v1 v2

v3

0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

The adjacency matrix of an undirected graph is always symmetric about the diagonal
line running from the upper left entry to the lower right. The adjacency matrix of a di-
rected graph need not be symmetric, however. Entries on the diagonal of an adjacency
matrix are nonzero only if the graph contains self-loops.
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Adjacency matrices are useful for two reasons. First, they provide one way to represent
a graph in computer memory. Second, by mapping graphs to the world of matrices,
one can bring all the machinery of linear algebra to bear on the study of graphs. For
example, one can analyze a highly-prized quality of graphs called “expansion” by looking
at eigenvalues of the adjacency matrix. (In a graph with good expansion, the number of
edges departing each subset of vertices is at least proportional to the size of the subset.
This is not so easy to achieve when the graph as a whole as few edges, say |E| = 3 |V |.)
Here we prove a simpler theorem in this vein. If M is a matrix, then Mij denotes the entry
in row i, column j. Let Mk denote the k-th power of M . As a special case, M0 is the
identity matrix.

Theorem 7. Let G be a digraph (possibly with self-loops) with vertices v1, . . . , vn. Let M be the
adjacency matrix of G. Then Mk

ij is equal to the number of length-k walks from vi to vj .

Proof. We use induction on k. The induction hypothesis is that Mk
ij is equal to the number

of length-k walks from vi to vj , for all i, j.

Each vertex has a length-0 walk only to itself. Since M0
ij = 1 if and only if i = j, the

hypothesis holds for k = 0.

Now suppose that the hypothesis holds for some k ≥ 0. We prove that it also holds for
k + 1. Every length-(k + 1) walk from vi to vj consists of a length k walk from vi to some
intermediate vertex vm followed by an edge vm—vj . Thus, the number of length-(k + 1)
walks from vi to vj is equal to:

Mk
iv1

Mv1j + Mk
iv2

Mv2j + . . . + Mk
ivn

Mvnj

This is precisely the value of Mk+1
ij , so the hypothesis holds for k +1 as well. The theorem

follows by induction.

5 Trees

A connected, acyclic graph is called a tree. (A graph is acyclic if no subgraph is a cycle.)
Here is an example of a tree:

A vertex of degree one is called a leaf . In this example, there are 5 leaves.
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The graph shown above would no longer be a tree if any edge were removed, because
it would no longer be connected. The graph would also not remain a tree if any edge were
added between two of its vertices, because then it would contain a cycle. Furthermore,
note that there is a unique path between every pair of vertices. These features of the
example tree are actually common to all trees.

Theorem 8. Every tree T = (V, E) has the following properties:

1. There is a unique path between every pair of vertices.

2. Adding any edge creates a cycle.

3. Removing any edge disconnects the graph.

4. Every tree with at least two vertices has at least two leaves.

5. |V | = |E|+ 1.

Proof. 1. There is at least one path between every pair of vertices, because the graph
is connected. Suppose that there are two different paths between vertices u and v.
Beginning at u, let x be the first vertex where the paths diverge, and let y be the next
vertex they share. Then there are two paths from x to y with no common edges,
which defines a cycle. This is a contradiction, since trees are acyclic. Therefore,
there is exactly one path between every pair of vertices.

u
x

y
v

2. An additional edge u—v together with the unique path between u and v forms a
cycle.

3. Suppose that we remove edge u—v. Since a tree contained a unique path between
u and v, that path must have been u—v. Therefore, when that edge is removed, no
path remains, and so the graph is not connected.

4. Let v1, . . . , vm be the sequence of vertices on a longest path in T . Then m ≥ 2, since
a tree with two vertices must contain at least one edge. There can not be an edge
v1—vi for 2 < i ≤ m; otherwise, vertices v1, . . . , vi would from a cycle. Furthermore,
there can not be an edge u—v1 where u is not on the path; otherwise, we could make
the path longer. Therefore, the only edge incident to v1 is v1—v2, which means that
v1 is a leaf. By a symmetric argument, vm is a second leaf.



Graph Theory 17

5. We use induction on |V |. For a tree with a single vertex, the claim holds since |E|+
1 = 0 + 1 = 1. Now suppose that the claim holds for all n-vertex trees and consider
an (n + 1)-vertex tree T . Let v be a leaf of the tree. Deleting v and its incident edge
gives a smaller tree for which the equation |V | = |E| + 1 holds by induction. If we
add back the vertex v and its incident edge, then the equation still holds because the
number of vertices and number of edges both increased by 1. Thus, the claim holds
for T and, by induction, for all trees.

Many subsets of the properties above, together with connectedness and lack of cycles,
are sufficient to characterize all trees. For example, a connected graph that satisfies |V | =
|E|+ 1 is necessarily a tree, though we won’t prove this fact.

5.1 Spanning Trees

Trees are everywhere. In fact, every connected graph G = (V, E) contains a spanning tree
T = (V, E ′) as a subgraph. (Note that original graph G and the spanning tree T have
the same set of vertices.) For example, here is a connected graph with a spanning tree
highlighted.

Theorem 9. Every connected graph G = (V, E) contains a spanning tree.

Proof. Let T = (V, E ′) be a connected subgraph of G with the smallest number of edges.
We show that T is acyclic by contradiction. So suppose that T has a cycle with the follow-
ing edges:

v0—v1, v1—v2, . . . , vn—v0

Suppose that we remove the last edge, vn—v0. If a pair of vertices x and y was joined by
a path not containing vn—v0, then they remain joined by that path. On the other hand,
if x and y were joined by a path containing vn—v0, then they remain joined by a path
containing the remainder of the cycle. This is a contradiction, since T was defined to be a
connected subgraph of G with the smallest number of edges. Therefore, T is acyclic.
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5.2 Tree Variations

Trees come up often in computer science. For example, information is often stored in tree-
like data structures and the execution of many recursive programs can be regarded as a
traversal of a tree.

There are many varieties of trees. For example, a rooted tree is a tree with one vertex
identified as the root. Let u—v be an edge in a rooted tree such that u is closer to the root
than v. Then u is the parent of v, and v is a child of u.

A

B
C

D

E

F

In the tree above, suppose that we regard vertex A as the root. Then E and F are the
children of B, and A is the parent of B, C, and D.

A binary tree is a rooted tree in which every vertex has at most two children. Here is
an example, where the topmost vertex is the root.

In an ordered, binary tree, the children of a vertex v are distinguished. One is called
the left child of v, and the other is called the right child. For example, if we regard the two
binary trees below as unordered, then they are equivalent. However, if we regard these
trees as ordered, then they are different.
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