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Solutions to the Final Examination

Problem 1 (20 points). Professor Plum, Mr. Green, and Miss Scarlet are all plotting to
shoot Colonel Mustard. If one of these three has both an opporunity and the revolver, then
that person shoots Colonel Mustard. Otherwise, Colonel Mustard escapes.

Exactly one of the three has an opportunity with the following probabilities:

Pr {Plum has opportunity} = 1/6

Pr {Green has opportunity} = 2/6

Pr {Scarlet has opportunity} = 3/6

Exactly one has the revolver with the following probabilities, regardless of who has an
opporuntity:

Pr {Plum has revolver} = 4/8

Pr {Green has revolver} = 3/8

Pr {Scarlet has revolver} = 1/8

(a) (5 points) Draw a tree diagram for this problem. Indicate edge and outcome proba-
bilities.

Solution. �

(b) (5 points) What is the probability that Colonel Mustard is shot?

Solution. 13/48 �

(c) (5 points) What is the probability that Colonel Mustard is shot, given that Scarlet
does not have the revolver?
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Solution. 5/21 �

(d) (5 points) What is the probability that Mr. Green had an opportunity, given that
Colonel Mustard was shot?

Solution. 6/13 �

Problem 2 (20 points). For the following problems, you do not need to simplify your
answers.

Note: The grading policy for the following four problems was:

5 = all correct
4 = minor error, e.g. arithmetic
3 = significant error, e.g. one term wrong
2 = more wrong than right
1 = something vaguely relevant
0 = all wrong

(a) (5 points) Next Christmas, the Grumpersons plan to divide among their three chil-
dren not only 11 pieces of coal, but also 13 pieces of scrap metal and 3 shards of glass. In
how many different ways can this be done?

Solution. By the product rule, the number of ways to divide up all the presents is equal
to the number of ways to divide the coal times the number of ways to divide the scrap
metal times the number of ways to divide the glass shard.(
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�

(b) (5 points) Each vertex of the graph below must be colored red, orange, yellow, or
green such that adjacent vertices are colored differently. In how many different ways can
this be done?
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Solution. There are 4 ways to color the leftmost vertex, 3 ways to color the next vertex,
and 2 ways to color each of the remaining vertices. By the general product rule, the total
number of colorings is:

4 · 3 · 28

�

(c) (5 points) How many different sequences of natural numbers (x1, . . . , x7) satisfy both
of the following equations:

x1 + x2 + x3 = 50

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 80

Solution. Subtracting the first equation from the second gives:

x4 + x5 + x6 + x7 = 30

The total number of solutions is equal to the number of ways to satisfy the first equation
multiplies by the number of ways to satisfy this new equation, which is:(

52
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)
·
(
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3

)
�

(d) (5 points) Each day, an MIT student selects a breakfast from among 8 possibilities:

cereal, fruit, pancakes, . . . , Doritos

The student selects lunch from among 10 possibilities:

sandwich from a truck, pizza from a truck, falafel from a truck, . . . , Doritos

The student selects dinner from among 7 possibilities:

pasta, hamburger, tacos, pizza, . . . , Doritos

In how many different ways can the student select a breakfast, a lunch, and a dinner if at
most one meal can be Doritos?
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Solution. There are 1 · 9 · 6 menus with Doritos only for breakfast, 7 · 1 · 6 menus with
Doritos only for lunch, 7 · 9 · 1 menus with Doritos only for dinner, and 7 · 9 · 6 menus with
no Doritos at all. Thus, the number of different menus with Doritos in at most one meal
is:

9 · 6 + 7 · 6 + 7 · 9 + 7 · 9 · 6

�

Problem 3 (20 points). Consider the following equation:(
2n

n + 1

)
=

n−1∑
k=0

(
n

k

)(
n

k + 1

)
(*)

(a) (5 points) Describe a set S of binary sequences whose size is given by the expression
on the left.

Solution. Let S be all 2n-bit sequences with exactly n + 1 ones.

Note that the problem explicitly required S to be a set of binary sequences. Solutions that correctly proved
the equality above but did not have S to be a set of binary sequences lost 1 point. �

(b) (10 points) Describe a way of partitioning S into disjoint subsets T0, . . . , Tn−1 such
that:

|Tk| =
(

n

k

)(
n

k + 1

)
In particular, state clearly which elements of S are in set Tk and explain why |Tk| satisfies
this equation.

Solution. Let Tk consist of 2n-bit sequences with exactly k zeros in the first n positions.
Each such sequence has n− k ones in the first n positions, and thus k + 1 ones in the last
n positions. There are

(
n
k

)
ways to select the first n bits and

(
n

k+1

)
ways to select the last n

bits, and so there are
(

n
k

)(
n

k+1

)
elements of Tk in all.

The most common mistake in this part was to describe Tk as the set of strings that have k ones in the first
half of the sequence and k + 1 ones in the second half of the sequence, which is wrong as this doesn’t
produce strings in S, in general. Solutions lost 4 points for this. �

(c) (5 points) Assume that you answered the previous two parts correctly. Explain why
equation (*) logically follows.
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Solution. Since S is equal to the disjoint union T0 ∪ . . . ∪ Tn−1, the sum rule implies:

|S| = |T0| ∪ . . . ∪ |Tn−1|

Substituting the results from the two preceding parts gives equation (*).

For this part, the most common mistake was to forget to mention the disjointness of the Tk’s as a justification
for applying the sum rule. Solutions lost 1 point for this. �

Problem 4 (20 points). Two roommates can decide who must scrub the bathtub by flip-
ping a coin. But how can three roommates decide? Here is a procedure that works, even
if the coin itself is biased!

1. Flip the coin three times.

2. If the coin lands the same way every time, then go to step 1.

3. Otherwise, one of the three coins lands differently from the other two; let the ran-
dom variable k be the number of this coin. For example, k(HHT ) = 3 and k(THT ) = 2.

Suppose that the coin lands heads-up with probability p, where 0 < p < 1, and that the
results on successive tosses are independent.

(a) (6 points) What is the probability that the branch back to step 1 is taken?

Solution. p3 + q3 where q ::= 1− p.
Answering just “p3,” got only 2 points of credit.

If you assumed p = 1
2 , which allowed you to give a numeric answer, you lost 4 points on this part. You

were not penalized again on the following two parts for this mistake assuming your reasoning was correct.
However, you had to be explicit in your reasoning to receive credit. �

(b) (7 points) If step 3 is reached, what is the probability that two of the last three flips
were heads?

Solution. p.

Various equivalent formulas also received full credit:

3p2q/(1− (p3 + q3)) = 3p2q/(3p2q + 3pq2)

= p/(p + q) = p.
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If you only provided the numerator, you lost 5 points because the purpose of the problem was to test your
ability to do conditional probabilities. If you missed the coefficient 3 (in the first version of the solution)
you lost 2 points. If you included the probability of the case HHH, you lost 2 points because the step 3. is
not reached at that outcome. �

(c) (7 points) What is the expected number of times that the coin is flipped?

Solution. 3/(1− (p3 + q3)) where q ::= 1− p.

Various equivalent formulas also received full credit:

3/(1− p3 − q3) = 3/(3p2q + 3pq2)

= 1/(pq(p + q)) = 1/pq.

Solutions left in terms of an infinite summation were also accepted:

∞∑
i=0

3(i + 1)(p3 + q3)i(1− (p3 + q3)).

Omitting the coefficient 3 for the expression cost 2 points. That was by far the most common mistake. �

Problem 5 (20 points). Let p1, p2, p3, . . . be the sequence of primes. Thus:

p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . .

Let k be an integer selected uniformly at random from the set {1, 2, 3, . . . , pn!}. (Note the
factorial symbol.)

(a) (4 points) Suppose 1 ≤ i ≤ n. What is the probability that pi | k?

Solution.
1

pi

�

(b) (8 points) What is the expected number of primes in the set {p1, p2, p3, . . . , pn} that
divide k? You may leave your answer as a sum; a closed form is not required.
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Solution.
1

p1

+
1

p2

+ · · ·+ 1

pn

�

(c) (8 points) Suppose 1 ≤ i < j ≤ n. Are the events pi | k and pj | k independent or
not? Briefly justify your answer.

Solution. Yes, because

Pr {(pi | k) ∧ (pj | k)} = Pr {(pipj | k)}

=
1

pipj

= Pr {(pi | k)} · Pr {(pj | k)}

�

Problem 6 (20 points). Amy and Bill say sorry to Poor Pete for cheating him in the coin-
flipping game. To make him feel better, they offer to play a new game:

1. Each player puts $2 on the table.

2. Each player secretly writes a number between 1 and 4.

3. They roll a fair, four-sided die with faces numbered 1, 2, 3, and 4.

4. The money on the table is divided among the players that guessed correctly. If no
one guessed correctly, then everyone gets their money back and Poor Pete is paid $0.25
in “apology money”.

Suppose that, once again, Amy and Bill cheat by picking a pair of distinct numbers uni-
formly at random.

(a) (12 points) For each event listed below, indicate the probability of the event and Poor
Pete’s profit if that event occurs.
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Pete guesses right AND
either Amy or Bill guesses right

Pete guesses right AND
both Amy and Bill guess wrong

Pete guesses wrong AND
either Amy or Bill guesses right

Pete guesses wrong AND
both Amy and Bill guess wrong

(b) (8 points) What is Poor Pete’s expected profit?

Problem 7 (20 points). We consider the unbiased Gambler’s Ruin game: the gambler
starts with n dollars and has some fixed target of T > 0 dollars, where n may vary be-
tween 0 and T . The gambler makes a series of 1 dollar bets. He wins each individual bet
with probability 1/2; if he wins a bet, his wealth increases by 1 dollar, and if he loses a
bet, his wealth decreases by 1 dollar. He continues betting until he has 0 dollars left (he is
“ruined”) or he has T dollars (he “reaches his target”).

Let
wn ::= Pr {the gambler reaches his target starting with $n} .

(a) (4 points) We know that for T ≥ n ≥ 2, the probability wn satisfies the recurrence

wn = awn−1 + bwn−2.

Fill in the values of a 2, b -1, w0 0, wT 1.

Solution. The recurrence equation can be derived from

wn−1 =
1

2
wn +

1

2
wn−2.

Most students gave the correct values of w0, wT . �

(b) (7 points) Let w(x) be the generating function for the sequence w0, w1, w2, . . . where
values of wn for n > T are defined according to the recurrence above. Derive a closed



Solutions to the Final Examination 9

form expression for w(x) in terms of x and w1. Note: If you’re unsure of your answers to
part (a), you can also use the symbols “a, b, w0, wT ” instead of their numerical values in
your formula.

Solution.

w(x) ::= w0 + w1x + w2x
2 + w3x

3 + . . .
−2xw(x) ::= − 2w0x − 2w1x

2 − 2w2x
3 + . . .

x2w(x) ::= w0x
2 + w1x

3 + . . .

(1− 2x + x2)w(x) = 0 + w1x + 0 + 0 + . . .

So
w(x) =

w1x

1− 2x + x2
.

5 points for using generating function but having incorrect closed-form expression for w(x). �

(c) (1 point) Briefly explain how to use the closed form in part (b) to conclude that

w(x) =
A

1− x
+

B

(1− x)2
.

for some constants A, B.

Solution. 1 − 2x + x2 = (1 − x)2 so by partial fractions, there must be A, B such that
w(x) = w1x/(1− x)2 = A/(1− x) + B/(1− x)2. �

(d) (8 points) Use part (c) and the known values of w0 and wT to derive a closed form
for wn. Note: This part does not depend on the values of a and b in part (a).

Solution.

0 =w0 = w(0) = A + B

1 =wT = coeff of xT in A/(1− x) + coeff of xT in B/(1− x)2

= A + B(T + 1).

So A = −1/T and B = 1/T . Now

wn = coeff of xn in
−1

T (1− x)
+ coeff of xn in

1

T (1− x)2

=
−1

T
+

n + 1

T
=

n

T
.

4 points for a solution without finding the values of A,B. �
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Problem 8 (10 points). Suppose we perform 2n independent flips of a fair coin.

(a) (3 points) What is the number, Ln, of heads that is most likely to come up? n

(b) (7 points) Derive an asymptotic (∼) closed form for the probability of flipping ex-
actly Ln heads.

Solution. The closed form expression is

1√
πn

.

We derive this closed form using Stirling’s formula. We know the probability of flipping
exactly n heads is (

2n

n

)
2−2n =

(
2n!

(n!)2

)
2−2n

Now

(
2n!

(n!)2

)
2−2n ∼

√
2π2n

(
2n

e

)2n

(√
2πn

(n

e

)n)2 · 2
−2n

=

2
√

πn

(
2n

e

)2n

2πn
(n

e

)2n · 2−2n

=

√
πn

(n

e

)2n

· 22n

πn
(n

e

)2n · 2−2n

=
1√
πn

.

3 points for the probability in binomial expression. 2 points for applying Stirling’s formula. 2 points for the
asymptotic closed form. �

Problem 9 (20 points). We want to estimate the fraction, d, of defective silicon wafers in
a long run of wafers from a fabrication facility. To do so, we make n independent random
choices of wafers from the run and test them for defects.
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(a) (10 points)

Explain how to use the Binomial Sampling Theorem (given below) to calculate a near-
minimal number, n, that will allow you to estimate d within 0.005 with 98% confidence.
Be sure to describe explicitly how to estimate d and why there will be such an n.

Theorem (Binomial Sampling). Let K1, K2, . . . , be a sequence of mutually independent 0-1-
valued random variables with the same expectation, p, and let

Sn ::=
n∑

i=1

Ki.

Then, for 1/2 > ε > 0,

Pr
{∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

}
≤ 1− 2ε

2ε
· 2−n(1−H((1/2)−ε))√

2π(1/4− ε2)n
(1)

where
H(α) ::=−α log2 α− (1− α) log2(1− α).

Solution. The estimate of d will be the fraction of defective wafers among the sample
of n. To find n, let ε = 0.005, and search for the smallest n such that the righthand side
of (1) is ≤ 0.02. There must be such an n because, for any fixed ε ≥ 0, the righthand side
expression approaches 0 as n approaches infinity.
Many students lost 2 points for the incorrect claim that the needed n must exist because of the Weak Law of
Large Numbers. The Weak Law of Large Numbers ensures that the lefthand side of (1) can be made as small
as desired by choosing n large. However, we find such an n by evaluating the bound given by the righthand
expression, and the reason we can find the desired n is that the righthand expression goes to zero.

In fact, it’s this limiting behavior of the righthand side that implies the Weak Law. But the Weak Law does
not conversely imply that a large n will make the righthand small. For example, as n increases, the lefthand
side will go to zero, but a (not so good) upper bound for it might not go to zero. �

(b) (10 points) The calculations in part (a) depend on some facts about how the n wafers
are chosen from the run. Write T or F next to each of the following statements to indicate
whether it is True or False; there will be a penalty for wrong answers, so do not guess
randomly.

• F Given a particular wafer, the probability that it is defective is d.

• T Given a particular wafer, the probability that it is defective is 1 or 0.

• F The probability that all n randomly chosen wafers will be different is Θ(1/
√

n).

• T The probability that the first randomly chosen wafer will be chosen again at an-
other time approaches one as n increases.

• T All wafers in the run are equally likely to be selected as the third among the n
random choices (assuming n ≥ 3).



Solutions to the Final Examination 12

• T The expectation of the indicator variable for the last wafer chosen being defective
is d.

• F The expectation of the indicator variable for the last wafer in the fabrication run
being defective is d.

• F Given that the first randomly chosen wafer was defective, the probability that the
second one will be defective is greater than d.

• T It turns out that there are several different colors of wafer. Given that the first
and second randomly chosen wafers are the same color, the probability that the first
wafer is defective may be < d.

Solution. (1) is false and (2) is true, since any particular wafer is either defective or not.
We justify these answers in the same way we justify (7) below. Many students got these two
questions wrong, perhaps because it was not clear what was meant by being “given a particular wafer.” A
better phrasing would have been to ask instead about the “9th wafer in the fabrication run,” for example.
(3) is false; our analyis of the Birthday ”paradox” implies the probability is exponentially
decreasing in n.

(4) is true. The probability that the next n wafers chosen after the first all differ from the
first one is, (1− 1/(length of run))n, which approaches zero as n increases. So the proba-
bility that the first wafer will be chosen again on one of the next n choices approaches one
as n increases. So if we keep choosing, we are certain to pick the first wafer again.

(5) is true by definition of independent choice.

(6) is true because the expectation of an indicator variable is the probability that it equals 1.

(7) is false because we’re sampling from a fixed fabrication run. We have no information
about the probability of different kinds of runs, and we are not treating the run as a ran-
dom process (it’s our sampling that is random). So the last wafer in the given run is not
random: it is either defective or not, and so it’s indicator variable is a constant 0 or 1.

(8) is false by definition of independent choice.

(9) is true because the probability of defects may not be independent of color. For exam-
ple, suppose d = 1/2 because half the wafers are the same color and are not defective,
while all the other wafers are of different colors and are defective . Now if the fabrication
run is large, the probability that the same wafer will be chosen the first two times is very
small. So given that the first two wafers are the same color, it’s almost certain that they
are different wafers of the same color and therefore are not defective. In other words, the
probability the first one is defective, given that the first two are the same color, will be
very small —much less than 1/2. �
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