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Problem Set 6

Due: Start of class on Tuesday, April 8.

Problem 1. The following equation holds for all n ∈ �
.

1 · 2 · 3 + 2 · 3 · 4 + · · · + n(n + 1)(n + 2) =
n(n + 1)(n + 2)(n + 3)

4

(a) Prove this fact using induction.

Solution. The proof is by induction. Let P (n) be the proposition that:

1 · 2 · 3 + 2 · 3 · 4 + · · · + n(n + 1)(n + 2) =
n(n + 1)(n + 2)(n + 3)

4

First, note that P (0) holds, because both sides of this equation are equal to zero.

Now we must show that for all n ≥ 0, P (n) implies P (n+1). Suppose that P (n)
is true, where n ≥ 0. Then we can reason as follows:

1 · 2 · 3 + 2 · 3 · 4 + · · ·+ n(n + 1)(n + 2) + (n + 1)(n + 2)(n + 3)

=
n(n + 1)(n + 2)(n + 3)

4
+ (n + 1)(n + 2)(n + 3)

=
(n + 1)(n + 2)(n + 3)(n + 4)

4

This shows that P (n) implies P (n+1). Therefore, the claim holds by induction.

(b) Prove this fact using well-ordering.

Solution. The proof uses well-ordering. Suppose that the claim is false. Let S
be the set of all n ∈ �

such that the equation does not hold. By our supposition,
S is nonempty, and by the well-ordering priniciple, S contains a smallest element.
This smallest element cannot be 0; in the case n = 0, both sides of the equation
are equal to zero and are therefore equal to each other. Therefore, the smallest
element of S must be some integer s > 0. Since s− 1 is in

�
and is not in S, the

equation must hold for n = s − 1. Thus we have:
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1 · 2 · 3 + 2 · 3 · 4 + · · · + (s − 1)s(s + 1) + s(s + 1)(s + 2)

=
(s − 1)s(s + 1)(s + 2)

4
+ s(s + 1)(s + 2)

=
s(s + 1)(s + 2)(s + 3)

4

The first step uses the fact that the equation holds for n = s − 1, and the
second step uses only algebra. This shows that the equation holds for n = s,
contradicting the definition of s. Therefore, our original supposition was wrong,
and the claim is true.

Problem 2. Is the proof of the following claim valid? If not, identify the first erroneous
statement and explain why it is wrong.

Claim Every nonegative rational number is equal to a2/b2 for some pair of nonegative

integers a and b.

Proof. The proof uses well-ordering. Suppose that the claim is false; that is, there is
at least one nonnegative rational number that cannot be written as a2/b2 for some pair of
nonnegative integers a and b. Let q be the smallest such number. Then, since q ′ = q/4
is a nonegative rational number smaller than q, there exist nonnegative integers a and b
such that q′ = a2/b2. But then q is also equal to a ratio of squares, namely (2a)2/b2. This
contradicts the definition of q. Therefore, our original supposition must be false, and so the
claim is true.

Solution. The proof is not valid. The first erroneous phrase is “Let q be the smallest such
number.” There is no assurance that such a q exists. The well-ordering principle guarantees
that every subset of

�
has a smallest element, but it does not guarantee that every subset

of the positive rational numbers has a smallest element.

In fact, the set of counterexamples to the claim has no smallest element; every term in the
following, strictly-decreasing sequence is a counterexample:

1

2
,

1

23
,

1

25
,

1

27
, . . .

In other words, we are claiming that 1/22k+1 is not a ratio of perfect squares for any k ∈ �
.

Suppose this were not the case; that is, there existed a and b such that:

1

22k+1
=

a2

b2
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Then it follows that:

b2 = a2 · 22k+1

But this is impossible; 2 divides the left side an even number of times, but divides the right
side an odd number of times.

Problem 3. Try drawing the figures below without lifting your pencil or running over the
same segment twice.

You should be able to draw the first, but not the second. Note that these figures can
be interpreted as graphs. The little circles represent vertices and the lines between them
indicate edges. Call a graph that can be drawn without lifting your pencil or retracing a line
drawable.

Now consider the following two conditions on a graph:

1. The graph is connected; that is, there is a path between every pair of vertices.

2. The number of vertices with odd degree is either zero or two.

(a) Prove that every drawable graph satisfies both of these conditions.

Solution. To solve this problem, we need a precise idea of what a path is. A
path is a sequence (a1, · · · , an) of vertices, such that ai 6= ai+1. If the sequence
contains n vertices, then we will say that the path has a length of n−1. Therefore,
we will conventionally consider that the empty path has a length of −1. A path
is closed if a1 = an, it is open otherwise. A graph is drawable if there is a path
(a1, · · · , an) such that each node is ai for some i, and for each vertex, there is
exactly one i such that {ai, ai+1} is that vertex (note that {u, v} = {v, u}).
Property 1 is easy to show. Indeed, if a graph is drawable, then there exists
a path p that goes through every vertex and edge of the graph without going
through an edge twice. For any pair (a, b) of vertices in the graph, those vertices
must therefore appear at least once each in p. Consider the subpath of p that
lies between some instance of a and some instance of b. That subpath goes from
a to b, or b to a. The existence of such a subpath for any pair of vertices in the
graph implies that the graph is connected.
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The empty graph trivially satisfies Property 2. For other drawable graphs, the
path needed to draw the graph has length at least 0. We shall show property 2
by induction on that length. Let P (n) be the predicate “a drawable graph that
can be drawn in n edges is of one of two types: either it only has even degree
vertices, and it is drawn by a closed path; either it has exactly two odd degree
vertices, and can be drawn by an open path”.

• Base case: The only graphs that can be drawn with a path of length of 0 is
the single-node graph. Its single node has an even number of edges, and the
path (v) used to draw it starts and ends on the same vertex. So P (0) holds.

• Inductive step: Assume that P (n) holds for n > 0. Consider any drawable
graph G that can be drawn by a path p of length n + 1. Let s and e be the
first and last vertices in p. Let q be the path that results from removing the
last virtex from p, it has a length of n. Let H be the graph that is drawn by
q. By definition, H is drawable, therefore it satisfise the conditions laid out
in P (n).

– Case 1: If H only has even-degree vertices, then let s be the last vertex
of q (the first and last elements of q are the same by the induction
hypothesis). In H, s is an even degree edge, and if e is present it is
also an even degree edge. Because they are consecutive in p, s and e
are distinct, so p is an open path. Moreover, by adding the edge {s, e}
to H to make G, s becomes an odd-degree vertex, and whether it was
present in H or not, e becomes an odd-degree vertex. All the other
vertices in H are unchanged by the operation and remain even-degree
edges. Therefore, G is a graph with exactly two odd degree vertices, and
the odd degree vertices are s and e which are the first and last vertices
of the open path p which defines G.

– Case 2: If H has exactly two odd-degree vertices, then let a be the last
vertex in q. By the induction hypothesis s and a are odd degree vertices
in H. When we add {a, e} to H to make it into G, a becomes an even
degree vertex since a and e, being consecutive in p, must be distinct.

∗ Case 2.1: If s and e are distinct vertices, then when going from H to G,
s remains an odd degree vertex, while e becomes an odd degree vertex
(it was even degree or absent in H being distinct from s and a). All
unmentioned vertices preserve their parity from H to G. Therefore,
there are exactly 2 odd degree vertices s and e in G, and the path that
defines G is open since s and e are distinct.

∗ Case 2.2: If s = e then when going from H to G, s becomes an even
degree vertex. All unmentioned vertices preserve their parity from H
to G. Therefore G only has even degree vertices, and is defined by a
closed path.

Thus in each case we have seen that the requirements for P(n+1) are met,
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so P(n+1) holds.

We may conclude by induction on n that P (n) holds for all n. Thus for any
drawable graph Property 2 holds, either because the graph is empty, or because
of P (n) where n is the number of edges in the graph.

(b) Prove that every graph satisfying both of these conditions is drawable.

Solution.

Will be provided later.

Problem 4. How many numbers must be selected from the set {1, 3, 5, 7, 9, 11, 13, 15} to
guarantee that some pair adds up to 16? Justify your answer using the pigeonhole principle;
in particular, what are the pigeons and what are the holes?

Solution. We shall show using pigeonhole principle that we need to pick five elements to
be sure that two of them add up to 16.

We have 4 holes: A, B, C and D. The pigeons are the elements of S = {1, 3, 5, 7, 9, 11, 13, 15}.
Given a subset of S, we place 1 and 15 in A, 3 and 13 in B, 5 and 11 in C, and 7 and 9 in
D. By the pigeonhole principle, if we pick a subset of S with at least 5 elements, then two
(distinct) elements will end up in the same hole. Because of the way the pigeons have been
assigned to holes, those two elements must add up to 16. Therefore, if we pick 5 elements,
we are sure that two of them add up to 15.

Noting that {1, 3, 5, 7} is a 4 element subset of S that does not have a pair of elements that
add up to 16, we can conclude that 5 is the smallest number of elements we need to pick to
be sure to find a pair that adds up to 16.

Problem 5. There is a group of people who were all born in 1983. Below is a list of
properties that the group may or may not possess. For each property, either give the mini-
mum number of people that must be in the group to ensure that the property holds, or else
indicate that the property need not hold even if the group is arbitrarily large. No proofs are
required.

(a) At least 2 people were born on the same day.

Solution. This property holds for every group of 366 or more people. With only
365 people, the people could all be born on different days. But by the pigeonhole
principle, where the 365 days of the year are holes, and the people are pigeons,
the property must hold for 366 people or more.

Note that there are two parts in this proof. First we see that 365 is not enough,
then that 366 is sufficient. If we only applied pigeonhole, we would know that
366 is sufficient, but we wouldn’t sure that 365 isn’t sufficient.

(b) At least 2 people were born on January 1.
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Solution. This property need not hold, even for arbitrarily large groups of
people. Indeed, they may all be born on April 1st, for example.

(c) At least 3 people were born on the same day of the week.

Solution. This property holds for every group of 15 or more people. With 14
people, each day of the week can correspond to two birthdays, but with 15, we
can apply the general pigeonhole principle with days of the week as holes and
people as pigeons.

(d) At least 4 people were born in the same month.

Solution. This property holds for every group of 37 or more people. With 36
people, three can be born on each month, but with 37, we can apply the general
pigeonhole principle with months as holes and people as pigeons.

(e) At least 2 people were born exactly one week apart.

Solution. This property need not hold. For example, everyone might be born
on the same day of the year.

(f) At least 2 people were born on the same day or else 2 people were born exactly
one week apart.

Solution. 184 people. Indeed, 183 people can be accomodated without satisfying
the property by having them born on alternate days of the year (Jan 1, Jan 3, . . . ,
Dec 29, Dec 31). Let us see pairs of days, one of which is in 1983, and which
are one week apart, as holes. There are 365 + 7 = 372 holes: one from each day
in 1983 to the day one week before, and one from each of the seven first days of
1984 to the day in 1983 that was one week before. Each person counts as two
pigeons, mobilizing the two holes corresponding to the person’s birthday. For
373 pigeons, we are sure that some pair will be picked twice. For that we need
b373/2c = 184 people.

(g) At least 9 people were born on a weekend or at least 11 people were born during
the week.

Solution. This property holds for every group of at least (9−1)+(11−1)+1 = 19
or more people. For 18 people, 9 can be born on the weekend and 11 on a weekday.
But if there are 19 people, either 9 or more are born on the weekend, or at most
8 are born on a week end, which implies that 19−8 = 11 or more are born during
the week. Therefore, the property must hold for 19 people.

(h) At least n people were born on the n-th day of the year for some n, where days
are numbered 1, 2, . . . , 365.

Solution. This property holds for at least 1+
∑

364

i=0
i = 364∗365/2+1 = 66431

people. Indeed, if ai is the number of people born on the ith day, the total
number of people is n =

∑
365

i=1
ai. If ai = i − 1 then the property doesn’t hold,

and n =
∑

365

i=1
(i−1) = 66430, so the property doesn’t hold for that many people.

For the property not to hold, we must have for each i, ai <= i − 1, therefore
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n <=
∑

365

i=1
(i− 1) = 66430. By the contrapositive, for 66431 people or more, the

property must hold.

Problem 6. Let D be the set of all points (x, y) in the real plane such that |x| + |y| ≤ 1.
Prove that among every set of five points in D, there exist two points whose distance from
one another is at most 1.

Solution. We solve this problem using the pigeonhole principle. A little geometry shows
that D is in fact a square of edge size

√
2, which can be tiled by four smaller squares of edge

size
√

2/2. The diagonal of each smaller square is therefore 1, so each one is inscribed in a
circle of diameter 1. The whole construction is shown here:

P

Q

R

S

We shall take the four small squares to be our holes, and the five points we wish to place
in D to be our pigeons. Since the four small squares cover D, each pigeon must fall into a
hole (it might actually fall on more than one because adjacent squares share an edge). By
the pigeonhole principle, two points must be in the same square. They are therefore in the
same circle of diameter 1, and thus must be within 1 of each other.

Problem 7. There is a meeting of n people. Each pair of people at the meeting either
shakes hands or does not shake hands. Prove that there must exist two people at the meeting
who shook the same number of hands.

Solution. We solve this problem using the pigeonhole principle. Let the pigeons be the
n people at the meeting, and the holes be number of times times that a person has shaken
hands.

First we consider the case where some person a hasn’t shaken any hands. In that case the
most hands any other person can shake is n − 2 (people don’t shake hands with themselves
or with a). So the number of hands a person can have shaken is between 0 and n− 2. Thus
there are n − 1 possible values for the number of handshakes a person has exchanged. By
the pigeonhole principle, at least two of the n people must have shaken the same number of
hands.

We now consider the complementary case where everybody has exchanged at least one hand-
shake. Now the number of handshakes for a person is between 1 and n − 1. Thus there are
still n− 1 possible values for the number of handshakes, and the pigeonhole principle allows
to conclude that two people have shaken hands the same number of times.
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We can conclude that in any case, two people must have shaken the same number of hands.

Problem 8. Suppose that during each day of an 13-week term, an MIT student feels
overwhelmed at least once. (Unfortunately, this is going to be one of those times.) However,
suppose that the student never feels overwhelmed more than 12 times in any one of the 13
weeks. Prove that there exists a sequence of consecutive days during which the student feels
overwhelmed exactly 25 times.

Solution. Let Pi be the total number of times the student feels overwhelmed in the
first i days. Since the student feels overwhelmed at least once every day, the sequence
P0, P2, . . . , P91 is strictly increasing. Since the student is overwhelmed at most 12 times per
week, the final term, P91, is at most 13·12 = 156. Now the sequence P0+25, P1+25, . . . , P91+
25 is also strictly increasing, and the largest term, P91 +25, is at most 156+25 = 181. There-
fore, the 184 values P0, . . . , P91, P0 + 25, . . . , P91 + 25 all lie between 0 and 181. By the
pigeonhole principle, at least two of these values must be the same. Since no two of the
numbers P1, . . . , P91 are equal, and no two of the numbers P1 + 25, . . . , P91 + 25 are equal,
there must be an i and a j such that Pi = Pj +25. This implies that on days j+1, j+2, . . . , i,
the student is overwhelmed exactly 25 times.


