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Problem Set 5

Due: Start of class on Tuesday, April 1.

Problem 1. A sequence of four bits is called a nibble. Let N be the set of all nibbles, and
let ∼ be a binary relation on N . The relation x ∼ y holds if and only if y can be obtained by
rotating x one or more times. Rotating the nibble b1b2b3b4 gives the nibble b4b1b2b3, where
bi ∈ {0, 1}.

(a) Show that ∼ is an equivalence relation.

Solution. To show that ∼ is an equivalence relation, we must show that it is
symmetric, reflexive and transitive.

Let R : N → N such that R(b1b2b3b4) = b4b1b2b3. R is simply the rotation
operation. We shall denote the n-th iteration of R by Rn. For example, R3(x) =
R(R(R(x))).

• First, we note that for any nibble x, R4(x) = x. Therefore for any nibble x,
x ∼ x, so ∼ is reflexive.

• Now suppose that x ∼ y. That means that there exists n > 0 such that
y = Rn(x). Let m be any multiple of 4 such that m > n. Because R4(x) = x,
Rm(x) = x (we could prove this by induction on m/4). But Rm(x) =
Rm−n(Rn(x)) = Rm−n(y) where m − n > 0. Therefore, y ∼ x. We have
shown that ∼ is symmetric.

• Finally, suppose x ∼ y and y ∼ z. Then y = Rn(x) and z = Rm(y) with
n > 0 and m > 0. Thus, z = Rm(Rn(x)) = Rm+n(x) and m + n > 0, so
x ∼ z. Therefore ∼ is transitive.

We conclude that ∼ is an equivalence relation as it is reflexive, symmetric and
transitive.

(b) Describe the equivalence classes of N under the relation ∼.

Solution. The equivalence classes of ∼ are produced by taking a nibble for
which the equivalence class isn’t known, rotating it to get all the nibbles in its
class, and then repeating this procedure until all nibbles have been placed in an
equivalence class.

The equivalence classes are:

1. 0000

2. 0001, 0010, 0100, 1000

3. 0011, 0110, 1100, 1001
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4. 0101, 1010

5. 0111, 1110, 1101, 1011

6. 1111

Problem 2. Let p be a positive integer. Then integers x and y are congruent modulo p if
x − y is a multiple of p. In symbols, this is written x ≡ y (mod p).

(a) Which integers are congruent to 1 mod 4?

Solution. There are infinitely many integers that are congruent to 1 mod 4.
From the definition, they are all the integers which can be written 1 + 4k, where
k is any integer. Those integers are: . . . ,−11,−7,−3, 1, 5, 9, 13, . . . .

(b) Show that congruence modulo p is an equivalence relation.

Solution. To show that congruence modulo p is an equivalence relation, we
show that it is reflexive, symmetric and transitive.

• For any integer x, x − x = 0 = p · 0, so x ≡ x (mod p). So congruence
modulo p is reflexive.

• For any integers x and y such that x ≡ y (mod p), we have x−y = pk, where
k is an integer. Therefore, y − x = p · (−k), where −k is also an integer, so
y ≡ x (mod p). So congruence modulo p is symmetric.

• For any integers x, y and z such that x ≡ y (mod p) and y ≡ z (mod p),
there exist integers i and j such that x − y = pi and y − z = pj. Therefore
x − z = x − y + y − z = p(i + j). Since i + j is also an integer, we conclude
that x ≡ z (mod p). So congruence modulo p is transitive.

Since it is reflexive, symmetric and transitive, congruence modulo p is an equiv-
alence relation.

Problem 3. Fibonacci numbers are defined as follows:

F (0) = 0

F (1) = 1

F (n) = F (n − 1) + F (n − 2) (for n ≥ 2)

Thus, the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, and 21. Prove that for all
n ≥ 1, F (n − 1) · F (n + 1) − F (n)2 = (−1)n.

Solution. The proof is by induction on n. Let P (n) be the proposition that F (n − 1) ·
F (n + 1) − F (n)2 = (−1)n.

First, we must show that P (1) holds. In that case, we have:
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F (1 − 1) · F (1 + 1) − F (1)2 = 0 · 1 − 12

= −11

Therefore, P (1) is true.

Next, we must show for all n ≥ 1 that P (n + 1) is true, assuming that P (n) is true. We
transform the left side of the equation in proposition P (n + 1) into the right side as follows.

F ((n + 1) − 1) · F ((n + 1) + 1) − F (n + 1)2

= F (n) · F (n + 2) − F (n + 1)2

= F (n) · (F (n + 1) + F (n)) − F (n + 1) · (F (n) + F (n − 1))

= F (n) · F (n + 1) + F (n) · F (n) − F (n + 1) · F (n) − F (n + 1) · F (n − 1)

= F (n) · F (n) − F (n + 1) · F (n − 1)

= −(−1)n

= (−1)n+1

We begin by simplifying. Then we use the definitions of F (n + 2) and F (n + 1). In the
next two steps, we multiply out and cancel terms. In the fifth step, we use the induction
hypothesis. In the last step, rewriting the expression gives the right side of the equation in
P (n + 1).

Since we have proved P (1) and showed that P (n) implies P (n + 1) for all n ≥ 1, the
proposition P (n) is true for all n ≥ 1 and the claim is proved.

Problem 4. Recall that a permutation is a bijective function mapping a finite set to itself.
Use induction to prove that there are n! = n ·(n−1) ·(n−2) · · · 3 ·2 ·1 different permutations
on a set of n elements.

Solution. Let F (S) be the set of permutations of S.

Let P (n) be the predicate “if S is a n element set then |F (S)| = n!”. We shall prove by
induction on n that P (n) holds for all positive integers.

Base case: There is exactly one function from the empty set to the empty set, it is bijective,
and 0! = 1. So P (0) is true.

Inductive step: Suppose that for some integer n ≥ 0 that P (n) is true.

Let S be a n + 1 element set. S = A∪{e} where A is a n element set and e is some element
of S.

For m ∈ S, let Pm = {f ∈ F (S) : f(e) = m}. Each element of F (S) is in exactly one of the
sets Pm, so |F (S)| =

∑
m∈S

|Pm|. We shall show that there are bijections between F (A) and



4 Handout 6: Problem Set 5

Pe, as well as between Pm and Pe. From this we can conclude that |F (S)| = (n+1)|F (A)| =
(n + 1)! which shows that P(n + 1) is true. We must now simply show that the bijections we
announced exist.

Let G : F (A) → Pe such that for i ∈ A, (G(f))(i) = f(i) and (G(f))(e) = e. G is
injective because if G(f) = G(g) then ∀i ∈ A, f(i) = g(i), which means that f = g. G is
surjective because for f ∈ Pe, we can consider f ′, the restriction of f to A. f ′ is in F (A) and
G(f ′) = f , so each element in Pe has a preimage in F (A). Thus G is a bijection. Therefore,
as announced, we find that there is a bijection between F (A) and Pe.

Let tm ∈ F (S) be the bijection that exchanges e and m, and leaves all other elements
unchanged (te is simply the identity function). Note that tm(tm(i)) = i.

Let gm : F (S) → F (S) such that (gm(f))(i) = tm(f(i)). The range of gm is included in F (S)
because gm(f) is simply f composed with tm, and the composition of two permutations of
a set S is still a permutation of S. Note that (gm(gm(f)))(i) = tm(tm(f(i))) = f(i), so
gm(gm(f)) = f . So gm is a bijection, and is its own inverse.

For f ∈ Pm, (gm(f))(e) = tm(f(e)) = tm(m) = e. So gm(Pm) ⊆ Pe. Moreover, for f ∈ Pe,
(gm(f))(e) = tm(f(e)) = tm(e) = m. So gm(Pe) ⊆ Pm. Since gm(gm(f)) = f , each element
f ∈ Pe is the image by gm of gm(f), which is an element of Pm. Therefore, gm defines a
surjection from Pm to Pe. Since gm is also globally injective, gm defines a bijection between
Pm and Pe. Therefore, the second type of bijection we had announced exists. Which allows
us to conclude that P (n + 1) is true.

Thus by induction on n we have shown that P (n) is true for all n. That is, there are n!
permutations of a n element set.

Problem 5. Let A, B, and C be finite sets, and let f : B → C and g : A → B be
functions. Let h be the function with domain A and range C that maps x ∈ A to f(g(x)).
Prove or disprove the following claims:

(a) If h is surjective, then f must be surjective.

Solution. True.

For all x in C: Since h is surjective, there exists y in A such that h(y) = x.
Therefore, by definition of h, f(g(y)) = x, so x is in the image of f .

Therefore, all of C is in the image of f , so f is surjective.

(b) If h is surjective, then g must be surjective.

Solution. False.

Suppose A = C = {1} and B = {1, 2}. Let f be such that f(1) = f(2) = 1, and
g such that g(1) = 1. In this case h is indeed surjective, as h(1) = 1, but g is not
surjective as it doesn’t map anything to 2.

(c) If h is injective, then f must be injective.

Solution. False.
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Taking the same example as in the previous case. h is injective, because only 1
maps to 1. However, f is not injective as f(1) = f(2).

(d) If h is injective, then g must be injective.

Solution. True.

For all x and y: If g(x) = g(y) then h(x) = f(g(x)) = f(g(y)) = h(y) so x = y
because h is injective.

Therefore, g is injective.

Problem 6. Xena the Warrior Princess and Conan the Barbarian are playing poker. Xena
is the dealer. Conan insists that she first deal him one card, then one to herself, then one
to him, and so forth, until they each have five cards. He admits that this gives him a slight
edge, since he gets the first chance to draw a good card. But he thoughtfully agrees to give
her the first card when he is dealer. Xena argues that Conan’s “brainless barbarian” dealing
method is pointless. She might as well deal five cards to him and then five cards to herself.

Conan challenges Xena to try her “prissy princess” dealing method. However, after Xena
deals five cards to Conan, he asks her what her odds are of getting a pair of aces. She
guesses maybe 1 in 20 or so. Conan says, “Ha! So much for your math! Your odds are
ZERO, because I already have three aces! This proves my point: by dealing to me first, you
gave me first shot at the good cards!”

Prove that Xena’s method of dealing is more favorable to Conan or prove the opposite. Your
argument should make use of a bijection.

Solution. Let the sample space S be the set of sequences of 52 distinct cards. We shall
consider that each outcome is equally likely because the deck is well shuffled.

The functions XC and CC map outcomes to the set of cards that Xena and Conan get using
Conan’s method of dealing, and XX and CX do the same for Xena’s method of dealing.

Let P be the permutation of elements of S that maps any sequence (c1, c2, c3, . . . ) to
(c1, c3, c5, c7, c9, c2, c4, c6, c8, c10, c11, c12, c13, . . . ). P is indeed a permutation of S because it
can be inverted by mapping (c1, c2, c3, . . . ) to (c1, c6, c2, c7, c3, c8, c4, c9, c5, c10, c11, c12, c13). It
is easily verified that XX(P (s)) = XC(s) and CX(P (s)) = CC(s).

For any set of hands HX and HC , there is a subset T of S that produces those hands using
Conan’s method of dealing. Because of the relations we found in the preceding paragraph,
Xena’s method of dealing produces HX and HC for any shuffle in P (T ). For any shuffle s
that give those hands with Xena’s method of dealing, P−1(s) must be in T because of those
same relations. Therefore, P (T ) is exactly the set of shuffles that produce HX and HC with
Xena’s method of dealing. Since P is a bijection, |P (T )| = |T | so there are the same number
of shuffles that produce those hands whether Xena’s method or Conan’s method of dealing is
used. Since shuffles are equally likely, we conclude that the hands have the same probability
with both methods.
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Since this reasoning applies for any set of hands, we conclude that both methods of shuffling
are equivalent. Conan is wrong. His reasoning on the aces is bogus because for each case
where he has 3 aces, thus preventing Xena from having two aces, there are even more cases
where he has no aces and Xena has slightly better odds of having 2 aces.

Problem 7. Recall that a tournament is a directed graph such that for every pair of
distinct vertices u and v, there is either an edge from u to v or from v to u, but not both.
Furthermore, no vertex has a self-loop.

(a) A Hamiltonian path is a directed path that visits every vertex exactly once. Prove
that every tournament contains a Hamiltonian path.

Solution. The proof is by strong induction on the number of vertices in the
tournament. Let P (n) be the predicate “Every n-vertex tournament graph con-
tains a Hamiltonian path”. We shall show by induction that P (n) holds for every
positive integer n.

Base case: A tournament graph with a single vertex trivially contains a Hamil-
tonian path.

Inductive step: Assume that P (1), . . . , P (n) hold, and consider an (n+1)-vertex
tournament graph G. Let a be an arbitrary vertex of G. There are three cases
to consider.

First, suppose that all of a’s edges are outgoing. Then let G′ be the n-vertex
tournament obtained from G by removing vertex a and all edges connected to a.
By induction, G′ has a Hamiltonian path. Prepending a to the beginning of this
path gives a Hamiltonian path in G.

Second, suppose that all of a’s edges are incoming. Then construct G′ as before.
Again, G′ has a Hamiltonian path by induction. Appending a to the end of this
path gives a Hamiltonian path in G.

Finally, suppose that a has some incoming edges and some outgoing edges. Let
G1 be the tournament graph on the vertices with edges directed toward a, and
let G2 be the tournament graph on the vertices with edges directed away from a.
By induction, both G1 and G2 have Hamiltonian path. We can then construct
a Hamiltonian path on G by taking the path in G1, appending a, and then
appending the Hamiltonian path in G2.

In all cases, G contains a Hamiltonian path. Therefore P (n + 1) is true. By
induction, we conclude that P (n) holds for all n ≥ 1. Therefore every tournament
graph contains a Hamiltonian path.

(If you wish to consider the empty graph as a tournament graph, the theorem
still holds; the empty path is a Hamiltonian path of the empty graph.)

(b) A king is a vertex u such that for every other vertex v, at least one of the following
holds:
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1. There is a directed edge from u to v.

2. There is another vertex x such that there is a directed edge from u to x and
a directed edge from x to v.

Prove that in every tournament, the verticies with the largest number of outgoing
edges must be kings.

Solution. We shall prove this by contradiction. Let a be a node with the
largest number k of outgoing edges, and let b be a node that is preventing a from
being a king (a can’t reach b in two steps or less).

Since a can’t reach b in one step, b → a.

Consider any node c other than a and b such that a → c. Since a � b, there are
exactly k such nodes. Because a can’t reach b in two steps, we must have c � b,
that is b → c.

Thus b has k outgoing edges to the nodes that a has outgoing edges to, and in
addition, b has an extra outgoing edge to a. So b has at least k + 1 outgoing
edges, which violates the definition of a as a node with the most outgoing edges.

We must conclude that b does not exist, therefore, a can reach any node in at
most two steps. Therefore, a is a king.


