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6.042J/18.062J: Mathematics for Computer Science March 11, 2003
Professors Charles Leiserson and Srini Devadas

Problem Set 4

Due: Start of class on Tuesday, March 18.

Problem 1. In lecture, we introduced five logical connectives: ∧, ∨, ¬, →, and ↔. How-
ever, we could get by with just two connectives: ¬ and →. Show how to rewrite each of the
following propositions using just those two.

(a) A ∧B
Solution. ¬(A→ ¬B)

(b) A ∨B
Solution. ¬A→ B

(c) A↔ B

Solution. ¬((A→ B)→ ¬(B → A))

(d) ((A ∨ ¬B) ∧ (¬C → D))↔ (A ∨ C)

Solution.
((A ∨ ¬B) ∧ (¬C → D))↔ (A ∨ C) can be re-written as
((¬A→ ¬B) ∧ (¬C → D))↔ (¬A→ C), which can be re-written as
¬((¬A→ ¬B)→ ¬(¬C → D))↔ (¬A→ C), which can be re-written as
¬((¬((¬A→ ¬B)→ ¬(¬C → D))→ (¬A→ C))→ ¬((¬A→ C)→ ¬((¬A→
¬B)→ ¬(¬C → D)))).

Problem 2. Translate the following statements into predicate logic. For each, specify the
domain of discourse. In addition to logic symbols, you may build predicates using arithmetic
and relational symbols and constants. For example, the statement “n is an odd number”
could be translated as ∃m(2m+1 = n) where the domain of discourse is Z, the set of integers.

(a) (Lagrange’s Four-Square Theorem) Every natural number is expressible as the
sum of four perfect squares.

Solution. The domain of discourse is N.

∀n∃w∃x∃y∃z(n = w2 + x2 + y2 + z2)
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(b) p is a prime number.

Solution. The domain of discourse is N.

(p > 1) ∧ ¬ (∃m∃n(m > 1 ∧ n > 1 ∧mn = p))

(c) (Goldbach Conjecture) Every even integer greater than two is the sum of two
primes.

Solution. The domain of discourse is N.

Denote prime(p) as

(p > 1) ∧ ¬ (∃m∃n(m > 1 ∧ n > 1 ∧mn = p))

the statement could be translated as

∀n (((n > 2) ∧ ∃m(n = 2m))→ ∃p∃q(prime(p) ∧ prime(q) ∧ (n = p+ q)))

(d) The function f : R 7→ R is continuous.

Solution. The domain of discourse is R

∀a∀x∃b∀y ((a > 0 ∧ b > 0 ∧ |x− y| < b)→ |f(x)− f(y)| < a)

(e) (Fermat’s Last Theorem) There are no nontrivial solutions to the equation:

xn + yn = zn

over the natural numbers when n > 2.

Solution. The domain of discourse is N.

∀x∀y∀z∀n ((x > 0 ∧ y > 0 ∧ z > 0 ∧ n > 2)→ ¬(xn + yn = zn))
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Problem 3. Use induction to prove each of the following assertions.

(a) For all n ∈ N:

n∑
k=0

k =
n(n+ 1)

2

Solution.

Proof. The proof is by induction on n. Let P (n) be the proposition that

n∑
k=0

k =
n(n+ 1)

2

Base case: we must prove that P (0) is true; that is, we must show that

0∑
k=0

k =
0(0 + 1)

2

This equation holds because both sides are equal to zero.

Inductive step: for all n ≥ 0, we assume that P (n) is true in order to prove
that P (n+ 1) is true.

n+1∑
k=0

k =

(
n∑
k=0

k

)
+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1)

2
+

2(n+ 1)

2

=
(n+ 1)(n+ 2)

2

Therefore, P (n) holds for all n ≥ 0 by induction. That is, for all n ∈ N:

n∑
k=0

k =
n(n+ 1)

2
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(b) For all n ∈ N and x ∈ R such that x 6= 1:

n∑
k=0

xk =
1− xn+1

1− x

Solution.

Proof. The proof is by induction on n. Let P (n) be the proposition that x 6= 1

n∑
k=0

xk =
1− xn+1

1− x

Base case: we must prove that P (0) is true; that is, we must show that

0∑
k=0

xk =
1− x0+1

1− x

This equation holds because both sizes are equal to 1 if x 6= 1.

Inductive step: for all n ≥ 0, we assume that P (n) is true in order to prove
that P (n+ 1) is true.

n+1∑
k=0

xk =

(
n∑
k=0

xk

)
+ xn+1

=
1− xn+1

1− x
+ xn+1

=
1− xn+1

1− x
+

(1− x)xn+1

1− x

=
1− xn+2

1− x

Therefore, P (n) holds for all n ≥ 0 by induction. That is, for all n ∈ N and
x ∈ R such that x 6= 1:

n∑
k=0

xk =
1− xn+1

1− x
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(c) For all n ∈ N:

13 + 23 + 33 + . . .+ n3 = (1 + 2 + 3 + . . .+ n)2

Solution.

Proof. The proof is by induction on n. Let P (n) be the proposition that

13 + 23 + 33 + . . .+ n3 = (1 + 2 + 3 + . . .+ n)2

Base case: P (0) is true vacuously. We must prove that P (1) is true; that is,
13 = 12. This equation holds since bothe sides are equal to 1.

Inductive step: for all n ≥ 1, we assume that P (n) is true in order to prove
that P (n+ 1) is true.

n+1∑
k=1

k3 =

(
n∑
k=1

k3

)
+ (n+ 1)3

=

(
n∑
k=1

k2

)2

+ (n+ 1)3

=

(
n(n+ 1)

2

)2

+ (n+ 1)3

=
n2(n+ 1)2

4
+

4(n+ 1)3

4

=
(n+ 1)2(n2 + 4n+ 4)

4

=
(n+ 1)2(n+ 2)2

4

=

(
n+1∑
k=1

k2

)

Therefore, P (n) holds for all n ≥ 0 by induction. That is, for all n ∈ N:

13 + 23 + 33 + . . .+ n3 = (1 + 2 + 3 + . . .+ n)2

(d) For all n ∈ N and x ∈ R such that x ≥ 0:

(1 + x)n ≥ 1 + xn
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Solution.

Proof. The proof is by induction on n. Let P (n) be the proposition that x ≥ 0

(1 + x)n ≥ 1 + xn

Base case: we must prove that P (0) is true; that is,

(1 + x)0 ≥ 1 + x0

which holds since both sides are equal to 1.

Inductive step: for all n ≥ 0, we assume that P (n) is true in order to prove
that P (n+ 1) is true.

(1 + x)n+1 = (1 + x)n(1 + x)

≥ (1 + xn)(1 + x)

= 1 + x(n+ 1) + x2n

≥ 1 + x(n+ 1)

In the first step, we put the last term out of the product. The second step uses
the induction hypothesis. The third step uses only algebra. The final step uses
the fact that x2n ≥ 0, since x ≥ 0 and n ≥ 0.

Therefore, P (n) holds for all n ≥ 0 by induction. That is, for all n ∈ N and
x ∈ R such that x ≥ 0:

(1 + x)n ≥ 1 + xn

Problem 4. Use induction to prove the following generalization of the the law of total
expectation. Let R be a random variable. Let A1, A2, . . . , An be disjoint events with
nonzero probabilities whose union is the whole sample space. Then:

Ex [R] =
n∑
i=1

Pr {Ai} · Ex [R | Ai]

Solution.

Proof. The proof is by strong induction on n. Let P (n) be the proposition that

n∑
i=1

Pr {Ai} · Ex [R | Ai] = Pr {A1 ∪ . . . ∪ An} · Ex [R | A1 ∪ . . . ∪ An]
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where R is a random variable and A1, . . . , An are disjoint events with nonzero probabilities.

Base cases:

we must prove that P (1) is true; that is

Pr {A1} · Ex [R | A1] = Pr {A1} · Ex [R | A1]

which holds since both sides are in the same format.

we must prove that P (2) is true. Let S be the sample space.

Pr {A1} · Ex [R | A1] + Pr {A2} · Ex [R | A2]

= Pr {A1}

(∑
s∈S

Rs · Pr {s | A1}

)
+ Pr {A2}

(∑
s∈S

R(s) · Pr {s | A2}

)
=

∑
s∈S

R(s) (Pr {s | A1}Pr {A1}+ Pr {s | A2}Pr {A2})

=
∑
s∈S

R(s) (Pr {s ∩ A1}+ Pr {s ∩ A2})

=
∑
s∈S

R(s) (Pr {(s ∩ A1) ∪ (s ∩ A2)})

=
∑
s∈S

R(s) (Pr {s ∩ (A1 ∪ A2)})

=
∑
s∈S

R(s) (Pr {s | A1 ∪ A2}Pr {A1 ∪ A2})

= Pr {A1 ∪ A2}

(∑
s∈S

R(s) · Pr {s | A1 ∪ A2}

)
= Pr {A1 ∪ A2} · Ex [R | A1 ∪ A2]

The first step uses the definition of conditional expectation. In the second step we merge the
two sums into one. The third step uses the definition of conditional probability. The fourth
step uses the fact that A1 and A2 are disjoint events. The fifth step uses the distributive laws.
The sixth step uses the definition of conditional probability. In the seventh step we move
the common term out of the summation. The last step uses the definition of conditional
expectation.

Inductive step: for all n ≥ 2, we assume that P (1), . . . , P (n) are true in order to prove
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that P (n+ 1) is true.

n+1∑
i=1

Pr {Ai} · Ex [R | Ai]

=

(
n∑
i=1

Pr {Ai} · Ex [R | Ai]

)
+ Pr {An+1} · Ex [R | An+1]

= Pr {A1 ∪ . . . ∪ An} · Ex [R | A1 ∪ . . . ∪ An] + Pr {An+1} · Ex [R | An+1]

= Pr {A1 ∪ . . . ∪ An+1} · Ex [R | A1 ∪ . . . ∪ An+1]

In the first step we put the last term out of the summation. The second step uses the
induction hypothesis that P (n) is true. The last step uses the induction hypothesis that
P (2) is true and the fact that A1∪ . . .∪An and An+1 are disjoint events, since A1, . . . , An+1

are disjoint events.

Therefore, P (n) holds for all n ≥ 1 by strong induction. That is,

n∑
i=1

Pr {Ai} · Ex [R | Ai] = Pr {A1 ∪ . . . ∪ An} · Ex [R | A1 ∪ . . . ∪ An]

where R is a random variable and A1, . . . , An are disjoint events with nonzero probabilities.

Since the union of A1, . . . , An is the whole sample space S,

n∑
i=1

Pr {Ai} · Ex [R | Ai] = Pr {A1 ∪ . . . ∪ An} · Ex [R | A1 ∪ . . . ∪ An]

= Pr {S} · Ex [R | S]

= Ex [R]
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Problem 5. We intended to ask you to prove an analogous generalization of the law of
total probability. But, apparently, some subset of the 6.042 tutorials made off with it:

Theorem 1 (Law of Total Probability) Let E be...

MMWWwaahAHAHAH! It’s ourz now suckahs!

You see the problem. The following tutorial sections are under suspicion:

• Empty Set

• Cthulhu

• Just Fines

• Amazings

• Burninator

• Mostly Harmless

The course staff has recorded the available evidence in predicate logic, where the domain of
discourse is the set of suspect tutorial sections. The predicate G is true for guilty sections,
the predicate S is true for sections tutored by Sam Daitch, and the predicate F is true for
sections that meet on Friday.

1. ∃x∃y∃z(x 6= y ∧ y 6= z ∧ x 6= z ∧G(x) ∧G(y) ∧G(z))

Solution. At least three different tutorials are guilty.

2. ∀x(¬G(x)→ ∃y∃z(x 6= y ∧ y 6= z ∧ x 6= z ∧ ¬(G(y) ∧G(z))))

Solution. If there exists one tutorial that is not guilty, then at least two tutorials are
not guilty.

3. ¬∀x(S(x)→ ¬G(x))

Solution. At least one of Sam’s tutorials is guilty.

4. ∃x(¬S(x) ∧G(x))

Solution. At least one of the guilty tutorials is not Sam’s.

5. G(Empty Set)→ ¬G(Cthulhu)

Solution. If the Empty Set is guilty, then Cthulhu is not.

6. ∀x((¬S(x) ∧ ¬F (x))→ ¬G(x))

Solution. If a tutorial is not Sam’s and does not meet on Friday, then it is not guilty.
In other words, Mostly Harmless is not guilty.

7. G(Burninator)→ G(Mostly Harmless)

Solution. If Burninator is guilty, then so is Mostly Harmless.
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8. ¬(¬G(Just Fines) ∨G(Cthulhu))

Solution. The Just Fines are guilty and Cthulu is not.

The list of tutorial assignments on the course web page may be helpful to you as well.

(a) Translate each assertion above into an equivalent English statement. Make the
statements as simple as you can.

(b) Which tutorial sections, if any, swiped the law of total probability? Explain your
reasoning.

Solution. Most Harmless is not guilty by 6. Burninator is not guilty by 7 and
the fact that Most Harmless is not guilty. Cthulhu is not guilty and Just Fines
is guilty by 8. Empty Set and Amazings are guilty by 1.

2, 3, 4, 5 are satisfied.

(c) State the law of total probability, generalized as the law of total expectation was
in the preceding problem.

Solution. Law of total probability: Let E be an event. Let A1, A2, . . . , An be
disjoint events with nonzero probabilities whose union is the whole sample space.
Then

Pr {E} =
n∑
i=1

Pr {Ai} · Pr {E | Ai}
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Problem 6. A group of n ≥ 1 people can be divided into disjoint teams, each containing
either 4 or 7 people. What are all the possible values of n? Prove that your answer is correct.

Solution. Based on the following observations

4 = 4

7 = 7

8 = 4 + 4

11 = 4 + 7

12 = 4 + 4 + 4

14 = 7 + 7

15 = 4 + 4 + 7

16 = 4 + 4 + 4 + 4

18 = 4 + 7 + 7

19 = 4 + 4 + 4 + 7

20 = 4 + 4 + 4 + 4 + 4

21 = 7 + 7 + 7

we claim and will prove the statement “A group of n ≥ 18 people can be divided into disjoing
teams, each containing either 4 or 7 people”.

Proof. The proof is by strong induction on n. Let P (n) be the proposition that a group
of n ≥ 18 people can be divided into disjoing teams, each containing either 4 or 7 people.

Base cases: P (18) is true since 18 = 4 + 7 + 7. P (19) is true since 19 = 4 + 4 + 4 + 7.
P (20) is true since 20 = 4 + 4 + 4 + 4 + 4. P (21) is true since 21 = 7 + 7 + 7.

Inductive steps: For all n ≥ 21, we assume that P (18), P (19), . . . , P (n) are true in order
to prove that P (n + 1) is true. Since n + 1 = (n − 3) + 4 and n − 3 ≥ 18, n + 1 people
can be first divided into 2 disjoint teams with 4 people and n − 3 people. The team with
n− 3 people can be further divided into disjoint teams with 4 or 7 people by the induction
hypothesis. That is, P (n+ 1) is true.

Therefore, P (n) holds for all n ≥ 18 by strong induction.

All the possible values of n are 4, 7, 8, 11, 12, 14, 15, 16, and ≥ 18.

Problem 7. (Optional) This problem is credited to Sir Aurthur Eddington, noted astron-
mer and physicist: “If A, B, C, and D each speak the truth with probability 1

3
and A affirms

that B denies that C declares that D is a liar, what is the probability that D was speaking
the truth?” Solve this problem, making the following assumptions:

• All four people made statements.
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• A, B, and C each made a statement that either affirmed or denied the statement that
followed.

• A lying affirmation is a denial, and a lying denial is an affirmation.

• The people lie mutually independently.

Solution. Let us define the following propositions:

• proposition R is “person A speaks the truth”.

• proposition S is “person B speaks the truth”.

• proposition T is “person C speaks the truth”.

• proposition W is “person D speaks the truth”.

• proposition X is “person C declares that person D is a liar”. That is, “person C declares
¬W”.

• proposition Y is “person B denies X”.

• proposition Z is “person A affirms Y”

We can construct a truth table of 16 different combinations of T’s or F’s for R, S, T, and
W, which represent 16 outcomes.

outcome R S T W X Y Z Pr
1 T T T T F T T 1

81

2 T T T F T F F 2
81

3 T T F T T F F 2
81

4 T T F F F T T 4
81

5 T F T T F F F 2
81

6 T F T F T T T 4
81

7 T F F T T T T 4
81

8 T F F F F F F 8
81

9 F T T T F T F 2
81

10 F T T F T F T 4
81

11 F T F T T F T 4
81

12 F T F F F T F 8
81

13 F F T T F F T 4
81

14 F F T F T T F 8
81

15 F F F T T T F 8
81

16 F F F F F F T 16
81

By assigning the probability to each of the outcomes, we have
Pr {“D was speaking the truth given A affirms that B denies that C declares that D is liar”}
= Pr {W is true | Z is true} = 13

41


