
Lecture 20 - Permutations and Combinations II
6.042 - May 1, 2003

The last two lectures considered the problem of counting the number of elements in a
finite set. We saw several basic techniques:

• The sum, product, and division rules.

• The use of bijections.

• Permutations and combinations.

• Inclusion-exclusion.

This lecture covers some common counting problems that can be solved by combining these
basic tools in various ways.

Nevertheless, many of the counting problems you subsequently encounter will not fall
into one of the categories presented here. So your goal should not be to memorize an arcane
formula for each type of problem we cover. Instead, make sure that you understand how the
formulas given here follow from the basic counting techniques that you’re already seen. An
ability to apply these fundamental tools effectively and in combination will carry you much
further than memorizing a long list of bizarre formulas.

There is another theme in this lecture. A wide range of counting problems can be recast
as questions about sequences of symbols. For example, earlier we constructed a bijection
between subsets of an n-element set and n-bit strings. Then we counted the number of n-bit
strings using the product rule. In this way, we found that an n-element set has 2n subsets.
This suggests a general approach to counting problems:

1. Use a bijection to recast the counting problem at hand into a problem about sequences
of symbols.

2. Solve the sequence-of-symbols problem.

This method works well for problems of the permutation/combination variety, but it does
not work well for problems with an inclusion-exclusion flavor. We’ll apply this recipe many
times over the course of the lecture.

1



1 Balls into Bins

Suppose that there are r balls, numbered 1, . . . , r, and there are n bins, labeled B1, . . . , Bn.
Each ball must be placed in a bin. How many arrangements are possible? For example, if
r = 2 and n = 2, then four arrangements are possible:

1
2 1 2 2 1

1
2

In each diagram above, bin B1 is on the left and B2 is on the right.

We can construct a bijection from balls-and-bins arrangements to sequences with r sym-
bols drawn from B1, . . . , Bn. In particular, if ball i is placed in bin Bj, then Bj is the i-th
symbol in the corresponding sequence. Thus, the four arrangements shown above correspond
to the following four sequences:

(B1, B1) (B1, B2) (B2, B1) (B2, B2)

All that remains is to count the number of different sequences containing r symbols drawn
from B1, . . . , Bn. By the product rule, we have:

|{B1, . . . , Bn}
r| = |{B1, . . . , Bn}|

r

= nr

This is the number of ways to arrange r distinguishable balls in n distinguishable bins.

2 r-Permutations with Repetition

Recall that an r-permutation of a set T is a sequence of r distinct elements of T . If the set
T has n elements, then the number of r-permutations of T is:

P (n, r) =
n!

(n − r)!

Now we consider a variant of r-permutations where the elements in the sequence are no
longer required to be distinct.

Definition 1 An r-permutation with repetition of a set T is a sequence of r elements of T .
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For example, if T is the set {A, B, C}, then the 2-permutations of T are:

(A, B) (A, C) (B, A)
(B, C) (C, A) (C, B)

In contrast, the 2-permutations of T with repetition are:

(A, B) (A, C) (B, A)
(B, C) (C, A) (C, B)
(A, A) (B, B) (C, C)

The last three sequences are new arrivals.

The set of all r-permutations with repetition of the set T is simply:

T × T × . . . × T
︸ ︷︷ ︸

r terms

= T r

If |T | = n, then this set has size nr by the product rule. Thus, the number of r-permutations
with repetition of an n-element set is nr.

Looking back, what we did in the preceding section was to construct a bijection from balls-
and-bins arrangments to permutations with repetition of the set of bins. Not surprisingly,
we found that there were nr arrangements, as well.

3 Permutations of a Multiset

How many different ways are there to arrange the letters in the word TABLE? This is
simply the number of permutations of the set {T, A, B, L, E}, which is 5! = 120. Some of
the exciting possibilities include:

(B, L, E, A, T ) (A, B, E, L, T ) (T, B, L, E, A)

How many different ways are there to arrange the letters in the word BOO? We might
like to say that this is equal to the number of permutations of the “set” {B, O, O}. But this
makes no sense, because the elements of a set are required to be distinct. We need some
new terminology. A multiset is a set where the elements need not be distinct. A permutation

of a multiset is a sequence that contains each element as many times as it appears in the
multiset. In these terms, what we’re asking for is the number of permutations of the multiset
{B, O, O}. Clearly, there are three:

(B, O, O) (O, B, O) (O, O, B)
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How many ways are there to arrange the letters in the word BEEP ? That is, how many
permutations are there of the multiset {B, E, E, P}? We could work through all the cases
explicitly, but let’s aim for a general formula. Suppose we make all the letters distinct by
adding subscripts:

{B, E1, E2, P}

This is an ordinary 4-element set, so we know that the number of permutations is 4!. Now
erasing the subscripts on the E’s defines a 2-to-1 mapping from permutations of this set to
permutations of the multiset {B, E, E, P}. For example:

(E1, P, E2, B)
(E2, P, E1, B)

}

map to (E, P, E, B)

(E1, E2, B, P )
(E2, E1, B, P )

}

map to (E, E, B, P )

etc.

By the division rule, the number of permutations of the multiset {B, E, E, P} is 4!/2 = 12.

How many different ways are there to arrange the letters in the word MISSISSIPPI?
That is, how many permutations are there of the multiset {M, I, S, S, I, S, S, I, P, P, I}?
Once again, let’s initially make all the letters unique by adding subscripts:

{M, I1, S1, S2, I2, S3, S4, I3, P1, P2, I4}

This is an ordinary 11-element set, so there are 11! permutations. Now, erasing the subscripts
on the P ’s defines a 2-to-1 mapping from permutations of this set to permutations of the
multiset:

{M, I1, S1, S2, I2, S3, S4, I3, P, P, I4}

Next, suppose that we erase the subscripts on the S’s. Prior to the erasure, the subscripts
on the four S’s could appear in 4! different orders. Sequences that differ only with respect to
the order of those subscripts are identical after the erasure. Thus, erasing the subscripts on
the S’s defines a 4!-to-1 mapping from permutations of the multiset above to permutations
of the multiset:

{M, I1, S, S, I2, S, S, I3, P, P, I4}

Similarly, erasing the subscripts on the I’s defines another 4!-to-1 mapping to permutations
of the multiset:
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{M, I, S, S, I, S, S, I, P, P, I}

At last, this is what we wanted to count in the first place! By applying the division rule at
each of the steps above, we find that the number of different ways to arrange the letters in
the word MISSISSIPPI is:

11!

2 · 4! · 4!

The reasoning we used suggests a general formula for the number of permutations of a
multiset.

Fact 1 (Permutations of a Multiset) Let M be a multiset with k different elements with

multiplicities n1, n2, . . . , nk. Then the number of permutations of the multiset M is:

(n1 + n2 + . . . + nk)!

n1! n2! . . . nk!

This formula is worth remembering. More importantly, make sure you understand the deriva-
tion. If you’re going to follow the plan of recasting everything in terms of sequences of
symbols, then you’d better know how to solve sequence-of-symbols problems!

4 Indistinguishable Balls into Bins

Suppose that there are r indistinguishable balls, and there are n bins, labeled B1, . . . , Bn.
Each ball must be placed in a bin. How many arrangements are possible? The fact that balls
are indistinguishable makes this problem quite different from the one we considered before,
where the balls were numbered. For example, if r = 2 and n = 2, then only three different
arrangements are possible, instead of four:

◦ ◦ ◦ ◦ ◦ ◦

The solution to this problem uses a sneaky bijection, which is sometimes called stars-and-

bars. We map each balls-and-bins configuration to a sequence of stars and bars by erasing
the bottoms of the bins, erasing the leftmost wall and the rightmost wall, and replacing each
ball with a star. For example:

◦ ◦ ◦ ◦ ◦ maps to ? ? ? ? ?
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This mapping allows us to recast the balls-and-bins problem as a sequence-of-symbols
problem. More precisely, we have established a bijection between arrangements of r identical
balls in n distinguishable bins and sequences containing r stars and n−1 bars. Note that the
bars correspond to boundaries between bins; thus, an arrangement with n bins corresponds
to a sequence with n − 1 bars.

All that remains is to solve the sequence problem. That’s easy: the sequences with r
stars and n − 1 bars are simply the permutations of a multiset with r stars and n − 1 bars.
According to our rule, the number of such permutations is:

(n + r − 1)!

r! (n − 1)!
=

(
n + r − 1

r

)

There is another way to count the stars-and-bars strings: we must select r of the n + r − 1
positions in the sequence to be stars, and the rest are bars. This selection can be done in
(

n+r−1

r

)
ways, by our basic formula for r-combinations.

Either way, the number of ways to arrange r indistinguishable balls in n distinguishable
bins turns out to be

(
n+r−1

r

)
.

5 r-Combinations with Repetition

Recall that an r-combination of a set T is a subset of T with exactly r-elements. Now we
introduce a variation:

Definition 2 An r-combination with repetition of a set T is a multiset of size r with ele-

ments drawn from T .

For example, the 2-combinations with repetition of the set T = {A, B, C} are the multisets:

{A, B} {A, C} {B, C}
{A, A} {B, B} {C, C}

How many r-combinations with repetition of an n-element set T are there?

This is another problem that can be solved by establishing a bijection to sequences of
stars and bars. Order the n elements of T in some way, so that we can talk about the first
element, second element, etc. Now map an r-combination with repetition to a sequence of
stars and bars as follows. Draw n − 1 bars. These bars define n segments. Each time the
i-th element of T appears in the combination, put a star in the i-th segment.

For example, suppose T = {A, B, C, D, E}. The mappings of some 7-combinations with
repetition of T to stars-and-bars sequences are shown below:
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{A, B, B, B, C, E, E} maps to ? | ? ? ? | ? || ? ?

{B, B, C, C, C, D, D} maps to | ?? | ? ? ? | ?? |

In the first example, A appears once in the combination, and so there is one star in the first
segment of the corresponding string. The element B appears three times, so there are three
stars in the second segment, and so forth.

Thus, the number of r-combinations with repetition of an n-element set is equal to the
number of sequences with r stars and n − 1 bars. As we saw before, this is equal to:

(
n + r − 1

r

)

Of course, there is nothing magical about stars and bars; we could equally well use sequences
of x’s and y’s, but stars and bars are traditional.

Here is another way of looking at the problem. There is a bijection from r-combinations
with repetition of an n-element set to arrangements of r-indistinguishable balls in n distin-
guishable bins: each time the i-th element appears in the combination, put a ball in the i-th
bin. This bijection explains why we got the answer

(
n+r−1

r

)
for both problems!

6 Distributions of Suits

Suppose that we distinguish the cards in a deck only by suit. Then the deck contains only
four different types of card and contains 13 cards of each type. How many different 13-card
hands are possible?

Here is one approach. The possible hands naturally correspond to the 13-combinations
with repetition of the 4-element set {♠,♥,♦,♣}. In the preceding section, we showed that
the number of such combinations is:

(
4 + 13 − 1

13

)

= 560

However, this approach sucks. Life is too short to spend time memorizing the definition of
things like “r-combinations of an n-element set with repetition and extra pickles”, let alone
the associated formulas.

A better plan is to work from first principles. There is a bijection from hands to sequences
of 3 bars and 13 stars: make one star for each spade, draw a bar, make a star for each heart,
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draw a bar, make a star for each diamond, draw a bar, make a star for each club. For
example:

♠♠♠♠♥♥♥♦♣♣♣♣♣ maps to ? ? ?? | ? ? ? | ? | ? ? ? ? ?

Now we’ve recast the card problem as a sequence-of-symbols problem, and we know how to
solve sequence-of-symbols problems! The number of such stars-and-bars sequences is:

(13 + 3)!

13! 3!
= 560

Because of the bijection, this is the number of different 13-card hands, if we distinguish cards
only by suit.

6.1 Probability of a Distribution

We now know that there are 560 different hands. But these may not be equally likely. For
example, surely a mix of suits is more likely than all spades. Let’s compute the probability
of being dealt a hand with exactly s spades, h hearts, d diamonds, and c clubs.

This problem is somewhat easier if we go back to regarding all 52 cards as distinct. Then
the number of possible hands is

(
52

13

)
, and these are equally probable. All that remains is to

count the number of hands with the right distribution of suits. We can choose the s spades
in

(
13

s

)
ways, the h hearts in

(
13

h

)
ways, the d diamonds in

(
13

d

)
ways, and the c clubs in

(
13

c

)

ways. By the product rule, the number of hands with the proper suit distribution is the
product of these four binomial coefficients. Therefore, the probability is:

Pr {(s, h, d, c)} =

(
13

s

)(
13

h

)(
13

d

)(
13

c

)

(
52

13

)

6.2 Indistinguishable Suits

We now know the probability of being dealt a specified number of spades, hearts, diamonds
and clubs. Let’s consider a slightly different question. Suppose that we’re dealt a hand of
13 cards from a well-shuffled deck, and we look at the multiset:

{# spades, # hearts, # diamonds, # clubs}

Now, for example, a hand of 13 diamonds is equivalent to a hand of 13 spades; both map to
the multiset {13, 0, 0, 0}.
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Each multiset corresponding to a 13-card hand has four elements that are in the range 0
to 13 that sum to 13. How many such multisets are there? Unfortunately, there is no tidy
formula. But a case analysis shows that there are 39 possibilities.

Which multiset is the most likely? A natural guess is that the number of cards from each
suit should be about the same, so the multiset {4, 3, 3, 3} is most probable. There are four
different suit distributions that yield this multiset, corresponding to the four ways to select
the suit shared by 4 cards:

s = 4 h = 3 d = 3 c = 3
s = 3 h = 4 d = 3 c = 3
s = 3 h = 3 d = 4 c = 3
s = 3 h = 3 d = 3 c = 4

Using this fact together with the formula for the probability of a suit distribution derived
the preceding section, the probability of the multiset {4, 3, 3, 3} is:

Pr {{4, 3, 3, 3}} =

(
13

4

)(
13

3

)(
13

3

)(
13

3

)

(
52

13

) · 4

≈
1
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Surprisingly, the most probable multiset is actually {4, 4, 3, 2}. The reason is that there
are twelve different suit distributions that yield this multiset; there are four ways to choose
the suit with 2 cards, and then three ways to choose the suit with 3 cards. Each of these
twelve distributions is slightly less likely than each of the {4, 3, 3, 3} distributions, but there
are three times as many! The probability of this multiset is:

Pr {{4, 4, 3, 2}} =

(
13

4

)(
13

4

)(
13

3

)(
13

2

)

(
52

13

) · 12

≈
1

5
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