
Lecture 18 - Counting
6.042 - April 24, 2003

One of the most common mathematical problems in computer science is counting the
number of elements in a set. This is often the core difficulty in determining a program’s
running time and memory consumption. Counting also comes up in the analysis of commu-
nications networks and is at the root of almost every complicated probability problem. We’ll
see several of the most useful counting techniques in this course, but this is only the tip of
the iceberg. There is an entire subfield of mathematics, enumerative combinatorics, devoted
to this task.

1 Three Simple Rules

Let’s begin with three simple counting rules.

Rule 1 (Sum Rule) Let A and B be finite, disjoint sets. Then:

|A ∪ B| = |A| + |B|

Rule 2 (Product Rule) Let A and B be finite sets. Then:

|A × B| = |A| · |B|

In contrast to the sum rule, the sets A and B in the product rule need not be disjoint. As
an example of the product rule, let’s count the number of different n-bit strings. Formally,
we want to find the cardinality of the set:

{0, 1}n = {0, 1} × {0, 1} × . . . × {0, 1}
︸ ︷︷ ︸

n terms

By the product rule, we have:

|{0, 1}n| = |{0, 1}|n

= 2n
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Rule 3 (Bijection Rule) Let A and B be finite sets. If there exists a bijective function

f : A → B, then:

|A| = |B|

The bijection rule is like induction and the pigeonhole principle, in the sense that it
is an “obvious” statement that leads to very nonobvious conclusions when cleverly ap-
plied. But let’s start with a not-so-clever application of the bijection rule. Let S be the
set {x1, x2, . . . , xn}. How many different subsets does S have?

We can solve this problem by constructing a bijection f : A → B, where A is the set of
all n-bit strings and B is the set of all subsets of S. In particular, let a be an n-bit string,
and let f(a) be the subset of S that contains element xi if and only if the i-th bit of a is a
1. For example, we would map the 10-bit string 0100111011 to a subset of {x1, x2, . . . , x10}
as follows:

a = { 0, 1, 0, 0, 1, 1, 1, 0, 1, 1 }
S = { x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 }

f(a) = { x2, x5, x6, x7, x9, x10 }

In this case, it is pretty clear that this mapping is a bijection. Sometimes this is not so obvious
and a proof is required. The existence of such a bijection implies that |B| = |A| = 2n.

In general, the set of all subsets of a set S is denoted 2S is is called the power set of S.
The reason for this notation is apparent from the preceding analysis: the power set of S has
2|S| elements.

2 Permutations

Definition 1 An r-permutation of a set T is a sequence of r distinct elements of T .

For example, the 2-permutations of the set {A, B, C, D} are the sequences:

(A, B) (A, C) (A, D) (B, A) (B, C) (B, D)
(C, A) (C, B) (C, D) (D, A) (D, B) (D, C)

How many r-permutations of an n-element set are there? Intuitively, there are n ways to
choose the first element of an r-permutation, n− 1 ways to choose the second element, n− 2
ways to choose the third, etc. Finally, there are n − r + 1 ways to choose the r-th element.
A routine induction confirms this intuition.
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Rule 4 (number of r-permutations) The number of r-permutations of an n-element set

is denoted P (n, r) and equal to:

P (n, r) = n · (n − 1) · (n − 2) · · · (n − r + 1)

=
n!

(n − r)!

In the example above, we listed all the 2-permutations of the 4-element set {A, B, C, D}.
Sure enough, we found 4!/2! = 12.

2.1 Special Dollar Bills

The serial number on a dollar bill has 8 digits. What is the probability that all the digits are
distinct? As a first step, we can use the product rule to determine how many serial numbers
are possible overall:

∣
∣{0, 1, 2, 3, . . . , 9}8

∣
∣ = |{0, 1, 2, 3, . . . , 9}|8

= 108

If we assume that all serial numbers are equally likely, then each serial number must appear
with probability 1/108. Now the serial numbers with all digits distinct are precisely the
8-permutations of the 10-element set {0, 1, 2, 3, . . . , 9}. Thus, there are P (10, 8) such serial
numbers. Therefore, the probability of the event that a random serial number has all digits
distinct is:

Pr {all digits distinct} =
P (10, 8)

108

=
10!

108 · 2!
≈ 0.0181

So only about 1 dollar bill in 55 has a serial number with no digit appearing more than once.

3 The Division Rule

Counting often requires a bit of fudging. That is, it may be convenient to initially overcount
the number of elements in a set and afterward introduce a corrective “fudge factor” to get the
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real answer. For example, we could determine the number of people in a room by counting
ears. Of course, this means that everyone is initially counted twice. But then dividing by a
fudge factor of 2 gives the correct number of people in the room. The term “fudge factor”
suggests imprecision, but the division rule makes this an exact procedure.

Rule 5 (Division Rule) Let A and B be finite sets, and suppose that f : A → B maps

exactly k distinct elements of A to each element of B. Then |A| = k · |B|.

A function of the sort described in this rule is called a k-to-1 function, because k distinct
elements of the domain are mapped to each element of the range.

3.1 Knights at the Round Table

In how many ways can King Arthur seat n knights at his round table? Two seatings are
considered equivalent if one can be obtained from the other by rotation. For example, the
following two arrangements are equivalent:

1
2

4
53

6 4

5
1

2

6

3

Let A be the set of all ways to line up the n knights against a wall, and let B be the set
of all possible seating arrangements at the round table. We can map each lineup in set A to
a circular seating arrangement in set B by seating the first knight in the lineup anywhere,
putting the second knight to his left, the third knight to the left of the second, and so forth
all the way around the table. This is an n-to-1 function. To see why, consider the reverse
procedure; given a circular seating arrangement, we can “cut” the circle at n different points
to produce n different lineups. Therefore, by the division rule, the number of circular seating
arrangements is:

|B| =
|A|

n

=
n!

n
= (n − 1)!

The first step uses the division rule. The second uses the fact that there are P (n, n) = n!
ways to line up the knights.
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4 Combinations

Definition 2 An r-combination of a set T is a subset of T with exactly r elements.

For example, the 2-combinations of the set {A, B, C, D} are the subsets:

{A, B} {A, C} {A, D}
{B, C} {B, D} {C, D}

Notice that permutations are sequences, but combinations are sets. Thus, (A, B) and (B, A)
are two different permutations, but {A, B} and {B, A} are just two ways of describing the
same combination.

Naturally, the next step to count r-combinations.

Rule 6 (number of r-combinations) The number of r-combinations of an n-element set

is denoted C(n, r) and equal to:

C(n, r) =
P (n, r)

r!

=
n!

r! (n − r)!

The proof of this fact uses the division rule. There is a natural mapping from r-
permutations to r-combinations: map the r-permutation (x1, . . . , xr) to the r-combination
{x1, . . . , xr}. This mapping is r!-to-1, because every r-permutation with the same elements
in a different order is also mapped to the same r-combination. Therefore, there are r! times
more r-permutations than r-combinations, as claimed.

We used C(n, r) above to denote the number of r-combinations of an n-element set.
However, there is a special notation for this quantity that is more commonly used:

(
n

r

)

=
n!

r! (n − r)!

The expression
(

n

r

)
is read “n choose r”, which a terse reference to quantity it represents,

“the number of ways to choose r distinct elements from a set of n elements”. Numbers of the
form

(
n

r

)
are often called “binomial coefficients”, because of their appearance in the famous

Binomial Theorem.

There are an enormous number of identities involving binomial coefficients. Perhaps the
simplest is:
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(
n

r

)

=

(
n

n − r

)

This identity is easy to prove algebraically; replace each binomial coefficient by the equivalent
expression involving factorials and note that they are identical. However, there is another
proof that uses no algebra at all! Let’s count the number of ways to choose r distinct
elements from a set of size n in two different ways. On one hand, our counting rule says
that this can be done in

(
n

r

)
ways. On the other hand, we could choose the r elements by

an alternative procedure: choose n − r elements, throw those out, and take the r elements
that remain. Our counting rule says that we can throw out n− r elements in

(
n

n−r

)
different

ways. Therefore,
(

n

r

)
and

(
n

n−r

)
both count the number of ways to choose r distinct elements

from a set of size n, and so the two expressions must be equal!

An argument of this type is called a combinatorial proof. The general idea is that counting
the elements of the same set in two different ways must give expressions that are equal. As
another example, let’s prove the following identity combinatorially:

n∑

k=0

(
n

k

)

= 2n

We’ll count the number of subsets of a set of size n in two different ways. On one hand,
we earlier used a bijection with binary strings to show that an n-element set has 2n subsets.
On the other hand, each subset of an n-element set contains between 0 and n elements,
and there are

(
n

k

)
ways to choose a subset of size k. Therefore, there are

∑
n

k=0

(
n

k

)
different

subsets of an n element set in all. We’ve shown that the two sides of the equation above are
both equal to the number of subsets of an n-element set and therefore they must be equal
to each other.

Combinatorial proofs are perfectly valid and are often much more convincing than the
reams of algebra that might otherwise be needed to prove an identity.

5 Poker

We now have a critical mass of counting rules. By combining them in various ways, we
can solve a wide range of counting problems. And we can also handle a lot of probability
problems that boil down to counting. As an exercise, let’s compute the probabilities of some
poker hands.

A poker hand consists of 5 cards chosen from a 52-card deck. Thus, there are
(
52

5

)
different

poker hands in all. Let’s assume that hands are dealt from a well-shuffled deck so that every
hand is equally likely.
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Recall that each card has a suit (♣, ♦, ♠, or ♥) and a rank (ace, 2, 3, . . . , 10, jack,
queen, or king). Two cards of the same rank are called a pair, and three cards of the same
rank are called a 3-of-a-kind. A hand containing both a pair and a three-of-a-kind is called
a full house. For example, here is one possible full house:

7♥ 7♣ 10♣ 10♦ 10♠

A hand countaining two pairs of different ranks and a fifth card of yet another rank is said
to have two pairs. For example, here is a hand with two pairs:

7♥ 7♣ 10♣ 10♦ 2♠

Note that, as defined here, a hand with two pairs can not be a full house.

5.1 What is the probability of a full house?

We can generate every full house in a unique way by the following procedure:

1. Choose the rank of the pair. This can be done in 13 ways.

2. Choose the suits of the pair. This can be done in
(
4

2

)
ways, since we must select 2 of

the 4 suits.

3. Choose the rank of the 3-of-a-kind. This can be done in only 12 ways, since one rank
is already taken by the pair.

4. Choose the suits of the 3-of-a-kind. This can be done in
(
4

3

)
ways, since we must select

3 of the 4 suits.

Therefore, the number of different full houses is 13 ·
(
4

2

)
·12 ·

(
4

3

)
. Since all

(
52

5

)
possible hands

are equally likely, the probability of being dealt a full house is:

Pr {full house} =
13 ·

(
4

2

)
· 12 ·

(
4

3

)

(
52

5

)

≈ 0.00144

This means that only about 1 hand in 700 is a full house.
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5.2 What is the probability of two pairs?

To answer this question, we must count the number of hands that have two pairs. Our
first attempt gives the wrong answer, but it is helpful to understand why this attempt fails.
Suppose that we generate hands with two pairs by the following procedure:

1. Choose the rank of the first pair in one of 13 ways.

2. Choose the suits of the first pair in one of
(
4

2

)
ways.

3. Choose the rank of the second pair in one of 12 ways.

4. Choose the suits of the second pair in one of
(
4

2

)
ways.

5. Choose the final card from among the 44 cards with a rank different from the ranks of
the two pairs.

The problem is that we are double counting. Every hand with two pairs can be generated in
two different ways by this procedure. For example, consider the hand:

7♥ 7♠ 9♥ 9♦ 2♣

We could generate this hand either by choosing rank 7 in the first step and rank 9 in the
third step or vice versa! We can find the actual number of hands with two pairs via the
division rule, which pretty much just provides a lofty justification for dividing by 2.

# hands with two pairs =
13 ·

(
4

2

)
· 12 ·

(
4

2

)
· 44

2

There is nothing wrong with this approach. We initially overcounted, but then cor-
rected the count with an appropriate fudge factor. But be careful: it is easy to accidentally
overcount and not realize that a corrective factor is needed!

Alternatively, we can generate each poker hand with two pairs in a unique way by the
following procedure.

1. Choose the ranks of the pairs in one of
(
13

2

)
ways.

2. Chose the suits for the pair of higher rank in one of
(
4

2

)
ways.

3. Choose the suits for the pair of lower rank in one of
(
4

2

)
ways.

4. Choose the remaining card in 44 different ways.
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This approach removes the whole issue of double counting, and we get the same answer as
before. Either way, the probability of two pairs is:

Pr {two pairs} =

(
13

2

)
·
(
4

2

)2

· 44
(
52

5

)

≈ 0.0475 . . .

This means that about 1 hand in 21 has two pairs.

6 A Magic Trick

There is a magician and an assistant. The assistant goes into the audience with a deck of
cards while the magician looks away. Five audience members are asked to select one card
each from the deck. The assistant then gathers up the five cards and announces four of them
to the magician. The magician thinks for a time and then correctly names the secret, fifth
card!

6.1 How the Trick Works

The assistant has somehow communicated the secret card to the magician just by naming
the other four cards. In particular, the assistant has two ways to communicate. First, he
can announce the four cards in any order. The number of orderings of four cards is 4! = 24,
so this alone is insufficient to identify which of the remaining 48 cards is the secret one.
Second, the assistant can choose which four of the five cards to reveal. The amount of
information that can be conveyed this way is harder to pin down. The assistant has

(
5

4

)
= 5

ways to choose the four cards revealed, but the magician can not determine which of these
five possibilities the assistant selected, since he does not know the secret card! Nevertheless,
these two forms of communication allow the assistant to covertly reveal the secret card to
the magician.

Here is an overview of how the trick works. The secret card has the same suit as the first
card announced. Furthermore, the assistant can ensure that the rank of the secret card is
between one and six steps clockwise from the rank of the first card in the diagram below.
This offset is communicated by the order of the last three cards.
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K A

2

3

4

5

67

8

9

10

J

Q

by ordering of

this card first.
Assistant reveals

This is the
secret card.

last 3 cards.

Offset passed

Here are the details. The audience selects five cards and there are only four suits in the
deck. Therefore, by the pigeonhole principle, the assistant can always pick out two cards
with the same suit. One of these will become the secret card, and the other will be the first
card that he announces.

Here is how he decides which is which. Note that for any two card ranks, one is at most
six clockwise steps away from the other in the diagram above. For example, if the card ranks
are 2 and Q, then 2 is three clockwise steps away from Q. The assistant ensures that the
rank of the secret card is offset between one and six clockwise steps from the first card he
announces.

The offset is communicated by the order in which the assistant announces the last three
cards. The magician and assistant agree in advance on an order for all 52 cards in the deck.
For example, they might use:

A ♣, 2 ♣, . . . , K ♣, A ♦, . . . , K ♦, A ♥, . . . , K ♥, A ♠, . . . , K ♠

With this order, one of the last three cards announced is the smallest (S), one is largest
(L), and the other is medium (M). The offset is encoded by the order of these three cards:

SML = 1 SLM = 2 MSL = 3
MLS = 4 LSM = 5 LMS = 6

For example, suppose that the audience selects 3♥ 8♦ A♠ J♥ 6♦. The assistant picks
out two cards with the same suit, say 3♥ and J♥. The 3♥ is five clockwise steps from J♥.
So the assistant makes 3♥ the secret card, announces J♥ first, and then encodes the number
5 by the order in which he announces the last three cards: A♠ 6♦ 8♦ = LSM = 5.

6.2 Same Trick with Four Cards?

Could the same magic trick work with just four cards? That is, if the audience picks four
cards, and the assistant reveals three, then can the magician determine the fourth card? The
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answer turns out to be “no”. The proof relies on counting and the pigeonhole principle.

Theorem 1 The magic trick is not possible with four cards.

Proof. The audience can select any 4-combination of the 52 cards; let A be the set of all such
4-combinations. The assistant can announce any 3-permutation of cards to the magician;
let B be the set of all such 3-permutations. The rules for the number of r-combinations and
r-permutations give the following sizes for A and B:

|A| = C(52, 4)

=
52!

48! 4!
= 270, 725

|B| = P (52, 3)

=
52!

49!
= 132, 600

The assistant sees a 4-combination of cards selected by the audience and must announce
a 3-permutation to the magician. Let f : A → B be the function that the assistant uses in
mapping one to the other. Since |A| > |B|, the pigeonhole principle implies that f maps at
least two 4-combinations to the same 3-permutation. That is, there are two different sets of
four cards that the audience can pick for which the assistant says exactly the same thing to
the magician.

For these two sets of four cards, three cards must be the same (since the assistant an-
nounces the same three cards in both cases) and one card must be different (since the two
sets are different). For example, these might be the two sets of four cards for which the
assistant says exactly the same thing to the magician:

3♥ 8♦ A♠ J♥
3♥ 8♦ A♠ K♦

In this case, the assistant announces 3♥ 8♦ A♠ in some order. The magician is now stuck;
he can not determine whether the remaining card is J♥ or K♦. 2
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