
Lecture 16 - State Machines and Invariants
6.042 - April 10, 2003

1 State machines

State machines show up all over computer science: inside microchips, in the guts of compilers,
in the analysis of protocols, and in the study of the mathematical theory of computation.

1.1 Basic definitions

Mathematically speaking, a state machine is a set of states together with a binary relation
that describes how the machine moves from one state to another. In addition, there are
some start states, which the machine may be in when it begins executing.

Definition 1 A state machine has three parts:

1. A nonempty set, Q, whose elements are called states.

2. A nonempty subset Q0 ⊆ Q, called the set of start states.

3. A binary relation, δ, on Q, called the transition relation.

You may have seen variations of this definition in a course on digital logic, compilers, or the
theory of computation. In those courses, the machines usually have only a finite number of
states. Also, the edges in the state graphs are usually labelled with input or output tokens.
We won’t need state machines take take input or produce output for the applications that
we’ll consider here.

Another view is that a state machine is really nothing more than a digraph whose vertices
are the states and whose edges are determined by the transition relation. Reflecting this view,
we often write q → q′ as alternative notation for the assertion that (q, q ′) ∈ δ. When we
draw a state machine as a digraph, we’ll double-circle the vertices corresponding to start
states.

1.2 Example: A Counter

Here is a simple example of a state machine, depicted as a directed graph.

1

0 1 2 99 overflow

start
state

Formally, this corresponds to the following state machine:

• Q = {0, 1, 2, . . . , 99, overflow}

• Q0 = {0}

• δ = {(0, 1), (1, 2), (2, 3), . . . , (99, overflow), (overflow, overflow)}. Note that the
overflow state has a self-loop, a transition to itself.

Unlike graphs, which just sit there, state machines execute. We’ll make the notion of
execution formal in a minute. For now, imagine a ticking clock. At every moment, the
state machine has a current state. Initially, this is one of the start states. With each tick of
the clock, the machine transitions to a new state. In particular, if the machine is currently
in state q ∈ Q, then it next transitions to some state q ′ ∈ Q such that q → q′ is a valid
transition; that is, (q, q′) ∈ δ.

For example, the machine above begins in state zero. With each tick of the clock, it
moves from state n to state n + 1. When it reaches the overflow state, it remains there
forever. Thus, this is a simple, bounded counter.

Our formal definition of the execution of a state machine will make no mention of clocks
and current states. However, it is often convenient easier to think about state machines in
those terms.

One can construct an unbounded counter similar to the 0 to 99 counter above. But that
would have an infinite state set, yielding an infinite digraph. This is harder to draw.

1.3 Example: Die Hard

In the movie Die Hard 3, Bruce Willis and Samuel Jackson are coerced by a homicidal maniac
into trying to disarm a bomb on a weight-sensitive platform near a fountain. To disarm the
bomb, they need to quickly measure out exactly four gallons of water and place it on the
platform. They have two empty jugs, one that holds three gallons and one that holds five
gallons, and an unlimited supply of water from the fountain. Their only options are to fill a
jug to the top, empty a jug completely, or pour water from one jug to the other until one is
empty or the other is full. They do succeed in measuring out the four gallons while carefully
obeying these rules. You can figure out how (or go see the movie or).

The Die Hard 3 situation can be formalized as a state machine as well.

2

• Q = {(b, l) ∈
�

2 | 0 ≤ b ≤ 5, 0 ≤ l ≤ 3}. Note that b and l are arbitrary real numbers,
not necessarily integers. After all, Bruce could scoop any unmeasured amount of water
into a bucket.

• Q0 = {(0, 0)} (because both jugs start empty)

• δ has several kinds of transitions:

1. Fill the little jug: (b, l) → (b, 3) for l < 3.

2. Fill the big jug: (b, l) → (5, l) for b < 5.

3. Empty the little jug: (b, l) → (b, 0) for l > 0.

4. Empty the big jug: (b, l) → (0, l) for b > 0.

5. Pour from the little jug into the big jug: for l > 0,

(b, l) →

{

(b + l, 0) if b + l ≤ 5,

(5, l − (5 − b)) otherwise.

6. Pour from big jug into little jug: for b > 0,

(b, l) →

{

(0, b + l) if b + l ≤ 3,

(b − (3 − l), 3) otherwise.

Note that in contrast to the 99-counter state machine, there is more than one possible
transition out of states in the Die Hard machine. Thus, the state of the machine after n

ticks of the clock is not completely determined.

A machine is called deterministic if its execution behavior is uniquely determined: there
is only one start state and there is at most one transition out of every state. Otherwise,
it is nondeterministic. In these terms, the Die Hard machine is nondeterministic, and the
counter machines are deterministic.

1.4 Executions of State Machines

The Die Hard 3 machine models every possible way of pouring water among the jugs ac-
cording to the rules. Die Hard properties that we want to verify can now be expressed and
proved using the state machine model. For example, Bruce will disarm the bomb if he can
reach some state of the form (4, l).

In graph language, a (possibly infinite) path through the state machine graph beginning
at a start state corresponds to a possible system behavior or process execution. A state is
reachable if there is a path to it starting from one of the start states.

3

Definition 2 An execution is a (possibly infinite) sequence q0, q1, . . . such that q0 ∈ Q0, and
∀i ≥ 0 (qi, qi+1) ∈ δ. A state is reachable if appears in some execution.

For example, we said that Bruce and Samuel successfully disarmed the bomb in Die
Hard 3. In particular, the state (4,3) is reachable; in particular, it appears in the execution
described below.

action state
start (0,0),
fill the big jug (5,0),
pour from big to little (2,3),
empty the little (2,0),
pour from big into little (0,2),
fill the big jug, (5,2),
pour from big into little (4,3).

1.5 Die Hard Once and For All

Bruce is getting burned out on dying hard, and according to rumor, is contemplating a sequel
called Die Once and For All. In this film, he will face a more devious maniac who provides
him with the same three gallon jug, but with a nine gallon jug instead of the five gallon one.
The water-pouring rules are the same. He must quickly measure out exactly four gallons or
the bomb will go off.

This time the task is impossible— whether done quickly or slowly. We can prove this
without much difficulty. Namely, we’ll prove that it is impossible, by any sequence of moves,
to get exactly four gallons of water into the large jug.

A sequence of moves is constructed one move at a time. This suggests a general approach
for proofs about sequential processes: to show that some condition always holds during
the executions of a process, use induction on the number, n, of steps or operations in the
executions. For Die Hard, we can let n be the number of times water is poured.

All will be well if we can prove that neither jug contains four gallons after n steps for all
n ≥ 0. This is already a statement about n, and so it could potentially serve as an induction
hypothesis. Let’s try lunging into a proof with it:

Theorem 1 Bruce dies once and for all.

Let P (n) be the predicate that neither jug contains four gallons of water after n steps.
We’ll try to prove ∀n P (n) using induction hypothesis P (n).

In the base case, P (0) holds because both jugs are initially empty. In the inductive step,
we assume that neither jug has four gallons after n steps and try to prove that neither jug
has four gallons after n + 1 steps.

4

Now we are stuck; the proof cannot be completed. The fact that neither jug contains
four gallons of water after n steps is not sufficient to prove that neither jug can contain four
gallons after n+1 steps. For example, after n steps each jug might hold two gallons of water.
Pouring all water in the three-gallon jug into the nine-gallon jug would produce four gallons
on the (n + 1)-st step.

What to do? We use the familiar strategy of strengthening the induction hypothesis.
Some experimentation suggests strengthening P (n) to be the predicate that after n steps,
the number of gallons of water in each jug is a multiple of three. This is a stronger predicate:
if the number of gallons of water in each jug is a multiple of three, then neither jug contains
four gallons of water. This strengthened induction hypothesis does lead to a correct proof
of the theorem.

However, to be precise about this proof, we need to use the state machine model. The
states and transition relation are the same as for the Die Hard 3 machine, with all occurrences
of “5” replaced by “9.” We could do an induction proof, but here we will use a proof pattern
that corresponds to the Invariant Theorem.

2 Reachability and Invariants

An induction proof about the Once and For All machine would follow a general proof pattern
that could be used to any analyze state machine behavior. Namely, we show that the integer-
multiple-of-3 property holds at the start state and remained invariant under state transitions.
So it must hold at all reachable states. In particular, since no state of the form (4, l) satisfies
the invariant, no such a state can be reachable.

Definition 3 An invariant for a state machine is a predicate, P , on states, such that when-
ever P (q) is true of a state, q, and q → r for some state, r, then P (r) holds.

Now we can reformulate the Induction Axiom specially for state machines:

Theorem 2 (Invariant Theorem) Let P be an invariant predicate for a state machine.
If P holds for all start states, then P holds for all reachable states.

The truth of the Invariant Theorem is as obvious as the truth of the Induction Axiom.
We could prove it, of course, by induction on the length of finite executions, but we won’t
bother.

Now, we will prove Theorem 1 using the predicate P (q) corresponding to the number of
gallons in each jug in state q is an integer multiple of 3. We will first prove that P is an
invariant.

Lemma 3 P is an invariant.

5

Proof. Assume P (b, l) is true, i.e., b and l are integer multiples of 3. We have to show that
for every state reachable by a single transition from P (b, l), the amounts in the jugs are still
integer multiples of 3.

The proof is by cases, according to which transition rule is used in the next step. For
example, using the “fill the little jug” rule for the (n+1)-st transition, we arrive at state (b, 3).
We already know that b is an integer multiple of 3, and of course 3 is an integer multiple of
3, so the new state (b, 3) has integer multiples of 3 gallons in each jug, as required. Another
example is when the transition rule used is “pour from big jug into little jug” for the subcase
that b + l > 3. Then the (n + 1)-st state is (b − (3 − l), 3). But since b and l are integer
multiples of 3, so is b− (3− l). So in this case too, both jugs will contain an integer multiple
of 3 gallons.

We won’t bother to crank out the remaining cases, which can all be checked with equal
ease. This means that P is an invariant. 2

Now, here’s the short (!) proof for Theorem 1.

Proof. P is an invariant. P (0, 0) is true since 0 is an integer multiple of 3. (It can be
expressed as 0 · 3.) By the Invariant Theorem, state (4, l) cannot be a reachable state since
P (4, l) is false. Therefore, Bruce dies! 2

3 Mutilated Grids

Suppose we have a 6 × 6 “mutilated” grid shown below. Can we tile it with Dominoes
oriented in two ways?

(a) (b)

It turns out we cannot. How can we prove this?

6

Look at the mutilated grid shown below, with squares alternately colored black and white.
It is immediately clear that each domino covers both a black and a white square. We can
use this observation to prove that we cannot tile the mutilated 6 × 6 grid. In fact, we can
prove a more general result.

���

���

������������������������������

������������������������������ ���

���

������������������������������

������������������������������

	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

��

��

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

��

��

��

��

���

���

���

���

��

��

������������������������������

 � � � � � � � � � � � �

!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!

"�"�""�"�""�"�""�"�""�"�""�"�"#�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�#

$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$$�$�$�$

First, note that a n × n ordinary grid or a m × m mutilated grid cannot be tiled with
Dominoes when m is odd for the simple reason that there are an odd number of squares in
these grids, since m2 and m2 − 2 are both odd when m is odd. Let us consider a 2n × 2n
mutilated grid. Our grid has n = 3.

We will model the tiling process as a state machine. The states correspond to partially-
tiled grids. The state machine for the tiling process is given below.

• Q = {(x, y) ∈ % 2 | 0 ≤ x ≤ 2n2 − 2, 0 ≤ y ≤ 2n2}, where x is the number of white
squares tiled (i.e., covered) by a Domino and y is the number of tiled black squares.

• Q0 = {(0, 0)} (because no squares are tiled initially).

• δ has a very simple structure: (x, y) → (x+1, y+1), for 0 ≤ x < 2n2−2, 0 ≤ y < 2n2.

Let P be the predicate that the number of white squares covered is equal to the number
of black squares covered. We will prove that P is an invariant.

Lemma 4 P is an invariant.

Proof. Let x be the number of black squares tiled and y be the number of white squares
tiled. Clearly, if x = y, then x + 1 equals y + 1, so P is an invariant. 2

7

Theorem 5 The 2n × 2n mutilated grid cannot be tiled.

Proof. Use P as the invariant. Clearly, for starting state (0, 0), the invariant holds. Therefore,
by the Invariant theorem, the state (2n2−2, 2n2) cannot be reached, since it does not satisfy
P . This means that we cannot tile the grid. 2

8

