
Lecture 15 - Trees, Recursive Definitions, and Structural Induction
6.042 - April 8, 2003

Note: These lecture notes are supplemented by Appendix B of Introduction to Algorithms by

Cormen, Leiserson, Rivest, and Stein, which is on the course web site.

1 Trees

The first part of this lecture concerns trees, one of the most important kinds of graph used
in computer science.

Definition 1 A tree is a connected, acyclic, undirected graph.

The terms in this definition require some explanation themselves. A path from vertex x0

to vertex xn is a sequence of edges (x0, x1), (x1, x2), . . ., (xn−1, xn). (However, a path is often
specified by giving the sequence of vertices traversed, which is x0, x1, . . . , xn in this case.) A
graph is connected if there is a path between every pair of vertices. A simple path is a path
in which no edge appears more than once. A cycle is a simple path that starts and ends at
the same vertex. A graph containing no cycles said to be acylic.

These formal definitions may be confusing, but the underlying idea of a tree is really
simple, as the following examples show.

Example 1. The graph below is connected because there is a path between every pair
of vertices. It is acylic, because there are no cycles. Because this graph is connected and
acyclic, it is a tree.

Example 2. This undirected graph is not a tree. The graph is acylic, but not connected.
In particular there is no path from a vertex in the left component to any vertex in the right
component.

1

Example 3. This graph is also not a tree. It is connected, but not acyclic.

Several special types of trees are particularly important in computer science: binary trees,
rooted trees, positional trees, etc. In this lecture, however, we shall consider trees with no
special restrictions on their structure. When there is risk of confusion with a special kind of
tree, we’ll call these free trees.

1.1 Equivalent Definitions

There are remarkably many different, yet equivalent, ways to define a tree. Many of these
alternate definitions are listed in the theorem below. (The proof of this theorem is tedious
and given in the supplemental reading.) You can check that each alternate definition holds
for the graph in Example 1, but is violated by the graphs in Examples 2 and 3.

Theorem 1 Let G = (V, E) be an undirected graph. The following statements are equivalent.

1. G is a tree (as defined above).

2. Every pair of vertices in G is connected by a unique simple path.

3. G is connected, but removing any edge disconnects G.

4. G is connected and |E| = |V | − 1.

5. G is acylic and |E| = |V | − 1.

6. G is acylic, but adding any edge creates a cycle.

1.2 The Diameter of a Graph

Graphs are often adorned with functions defined on their vertices or edges. For example,
suppose that we want to study airline routes. We might use a graph where vertices represent
cities and edges represent direct flights. We could then incorporate flight times into our model
by defining a function mapping each edge of the graph to the duration of the corresponding
flight. This notion leads to another slew of definitions.

2

Definition 2 An edge-weighted graph is a graph G = (V, E) together with a function w :
E →

�
that assigns a weight w(e) to each edge e ∈ E.

Strictly speaking, if (u, v) is an edge in the graph, then its weight should be denoted w((u, v)).
But the double parentheses are annoying, so we’ll write w(u, v) instead. Also, if (u, v) is not
an edge of G, then we say w(u, v) = ∞.

Definition 3 In an edge-weighted graph, the length or weight of a path p consisting of edges
e1, . . . , ek is denoted w(p) and is defined by:

w(p) =
k∑

i=1

w(ei)

Definition 4 In an edge-weighted graph, the distance between vertices u and v is denoted
d(u, v) and is defined to be the length of the shortest path from u to v.

Example 4. Below is an example of an edge-weighted graph. The weight of each edge
is noted beside it. The length of the shortest path from vertex a to vertex b is d(a, b) =
3 + 2 + 4 = 9. Notice that this is not the path with the fewest edges.

3

1

10

2
4

8
7

5

9

6

a

b

Distances between vertices in an edge-weighted graph obey the triangle inequality:

Fact 1 (Triangle Inequality) If u, v, and x are vertices in an edge-weighted graph, then:

d(u, v) ≤ d(u, x) + d(x, v)

Intuitively, this says that the absolute shortest path from u to v is no longer than the shortest
path from u to v that also visits x on the way. Remember that d(u, v) is the length of the
shortest path between u and v, which is not necessarily the weight of the edge (u, v). For
example, in the graph above, the distance between the vertices joined by the weight 10 edge
is only 2 + 4 = 6.

3

Definition 5 The diameter of an edge-weighted graph is the distance between the two most-
distant vertices.

As a special case, the diameter of a disconnected graph is said to be ∞. Finding the
diameter of the graph in Example 4 is not so easy! Some hunting around shows that it is
6 + 1 + 3 + 2 + 8 = 20.

1.3 Finding the Diameter of a Tree

There is a simple procedure for finding the diameter of a tree.

1. Pick any vertex v1 ∈ V .

2. Find a vertex v2 ∈ V that is maximally distant from v1.

3. Find a vertex v3 ∈ V that is maximally distant from v2.

4. The diameter of the graph is d(v2, v3).

Theorem 2 The diameter-finding procedure always gives a correct answer.

Proof. The proof uses contradiction and the well-ordering principle. Let G = (V, E) be the
smallest tree (with respect to number of vertices) for which the procedure gives the wrong
answer. Note that we can not have |V | = 1; in that case, the procedure correctly outputs 0.

Selecting a vertex v1 ∈ V , partitions the remainder of the graph into subtrees. The
situation is depicted in the figure below.

v
1

x

t

v2

subtree T

Let T denote the subtree containing vertex v2, and let t be the vertex in T that is adjacent
to v1. Let vertices x and y be the endpoints of a true diameter; that is, choose x and y so
that d(x, y) is equal to the diameter of the graph.

First, we show that at least one of the vertices x and y is not in subtree T . Suppose
that x and y are both in T . Then the procedure would fail on the graph consisting of only

4

the subtree T . (If the procedure initially picks node t, then v2 is selected as before. Since
the graph is smaller, the procedure must then select some v ′

3
such that d(v2, v

′

3
) ≤ d(v2, v3).

Thus, since the procedure gave a too-small answer for G, it also gives a too-small answer
for the graph consisting of only subtree T .) Since G is defined to be the smallest graph for
which the procedure fails, this gives a contradiction. Therefore, at least one of x and y is
not in subtree T .

Without loss of generality, suppose that x is not in T . Then we can argue as follows:

d(v2, v3) ≥ d(x, v2)

= d(x, v1) + d(v1, v2)

≥ d(x, v1) + d(v1, y)

≥ d(x, y)

The first step uses the fact that v3 is defined to be a vertex maximally distant from v2. In
the second step, we use the fact that there is a unique path between vertices in a tree. (See
Theorem 1, part 2.) In this case, the unique path from x to v2 must pass through v1, since
v2 is in subtree T and x is not. The third step uses the fact that v2 is a vertex maximally
distant from v1. The final step uses the triangle inequality.

Now we have a contradiction, because the procedure does not fail on G after all. The
distance between v2 and v3 is as great as the distance between x and y, the endpoints of
a true diameter. Therefore, our original supposition was incorrect, and so the procedure
always gives the right answer. 2

This procedure does not necessarily work for graphs that are not trees. In the example
below, assume that all edges have weight 1. The procedure might select vertices v1, v2, and
v3 as shown and conclude that the diameter of the graph is 4. However, the distance between
vertices x and y is 6.

x

v
2

v = v
1 3

y

5

2 Recursive Definition

Many sets, functions, and other mathematical objects can be defined recursively. For exam-
ple, we defined the Fibonacci numbers recursively as follows:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 (for n ≥ 2)

Similarly, the Peano axioms define the natural numbers recursively by asserting that zero is
a number and that every number has a successor.

Many interesting sets can be expressed using a three-part recursive definition.

1. A base clause specifies a set of base elements that belong to S.

2. An inductive clause defines ways of combining elements of S to obtain new elements
of S.

3. An extremal clause states that the only elements of S are those that can be produced
by finitely-many applications of the preceding two clauses. The extremal clause is
usually understood to be present and not stated explicitly.

As an example, we can define the set of trees recursively as follows:

1. A graph with a single vertex is a tree:

2. Suppose that G1 = (V1, E1) and G2 = (V2, E2) are trees and that V1 and V2 are disjoint.
Let v1 be a vertex in V1, and let v2 be a vertex in V2. Then G = (V1 ∪ V2, E1 ∪ E2 ∪
{(v1, v2)}) is also a tree:

1G G2

v
2

v
1

6

We can prove that this definition of a tree is equivalent to the six previously given. We
won’t, because it is tedious, but we could. No, really.

Sometimes one wants to prove that all the elements in an inductively-defined set have a
property P . This can be done with a structural induction argument, which has two parts:

1. Show that all the base elements have property P .

2. Show that inductively-generated elements have property P , assuming that the elements
they’re generated from have the property.

These two steps suffice to show that every element in the set has property P . The reason
is that any such argument can be translated into a traditional induction on the number of
applications of the inductive clause. The use of structural induction is illustrated in the
proof of the following mini-theorem.

Theorem 3 Let G = (V, E) be a tree. Then |E| = |V | − 1.

Proof. The proof is by structural induction. Let P be the property that the number of
vertices exceeds the number of edges by 1. First, suppose that G consists of a single vertex.
Then |V | = 1 and |E| = 0, and so G has property P . Now suppose that G1 = (V1, E1) and
G2 = (V2, E2) are trees with property P . Let G = (V, E) be the tree obtained from G1 and
G2 via the inductive clause. Then we have:

|E| = |E1| + |E2| + 1

= (|V1| − 1) + (|V2| − 1) + 1

= (|V1| + |V2|) − 1

= |V | − 1

The first step uses the definition of G. The second uses the fact that G1 and G2 have property
P . We simplify in the third step, and the final step again uses the definition of G. Thus tree
G has property P as well. Thus, we have shown that every tree has property P by structural
induction. 2

7

