
Lecture 12 - Functions
6.042 - March 20, 2003

1 Functions

A function f : A 7→ B maps each element of the set A to exactly one element of the set B.
More formally:

Definition 1 A function f : A 7→ B is a relation f ⊆ A × B such that for every x ∈ A,

there is a unique y ∈ B such that (x, y) ∈ f . This unique value y is denoted f(x). The set

A is called the domain of f , and B is called the range of f .

The image of a function f : A 7→ B is the set of all values that the function takes on;
that is, the image of f is the set:

{y ∈ B | ∃x f(x) = y}

The image is always a subset of the range, but may or may not be equal to the range. For
example, let f :

� 7→ �
be the function defined by f(x) = x2. The range of this function

is all the real numbers, but the image is only the nonnegative real numbers. On the other
hand, the image of the function g :

� 7→ �
defined by g(x) = x3 is equal the whole range,

�
.

(Note: Rosen uses the term “codomain” for what we call the range, and “range” for what
we call the image. Unfortunately, both his naming scheme and ours are in wide use.)

1.1 Types of Functions

There are some important properties that a function may or may not possess. A function
f : A 7→ B is:

• surjective if its image is equal to its range; that is, if:

∀y ∈ B ∃x ∈ A f(x) = y

• injective if distinct elements of the domain are always mapped to distinct elements of
the range; that is, if:

∀x, x′ ∈ A (x 6= x′) → (f(x) 6= f(x′))

• bijective if the function is both surjective and injective

1



To get a feel for these properties, let’s look at some funtions where the domain and range
are finite. In each diagram below, the domain is on the left and the range is on the right.
Small circles indicate set elements, and arrows show how each element of the domain is
mapped to an element of the range.

This first function is surjective, because each element of the range is mapped to by some
element of the domain. However, it is not injective, because the topmost element in the
range is mapped to by two elements of the domain.

This function is not surjective, because the topmost element of the range is not mapped to.
On the other hand, it is injective because no two elements of the domain map to the same
element in the range.

This function is surjective, because every element of the range is mapped to. It is also
injective, because no two elements of the domain map to the same element in the range.
Because this function is both surjective and injective, it is also bijective.

2



This last function is neither surjective nor injective.

There are several other names in common use for the properties described here. A
surjective function is sometimes called onto. An injective function may be called into or
one-to-one. Bijective functions are sometimes called one-to-one correspondences. One type
of bijection is particularly important:

Definition 2 A permutation is a bijective function mapping a finite set to itself.

1.2 Examples of Functions

Let’s determine the properties of some common functions.

1. Let f :
� 7→ �

be the function defined by f(x) = |x|.
This function is not injective, because f(1) = f(−1), for example. It is not surjective,
because f(x) is never equal to, say, −1. (If we restricted the range to the nonnegative
real numbers, the function would be surjective.)

2. Let f :
� 7→ �

be the function defined by f(x) =
√

x.

This is not even a function! When x is nonnegative,
√

x denotes the positive square
root of x. When x is negative,

√
x is certainly not a real number and, arguably, not

defined at all.

3. Let f : � 7→ � be the function defined by f(x) = 2x.

This function is injective; doubling different numbers gives different numbers. However,
it is not surjective; doubling a natural number never gives 7, for example. (If the
domain and range were enlarged to

�
, this function would be both surjective and

injective, and therefore also bijective.)

4. Let f : � 7→ � be the function defined by f(x) = bx/2c.
This function is not injective, because b5/2c = b4/2c, for example. However, the
function is surjective; for every y ∈ � , there is an x such that f(x) = y, namely,
x = 2y.

3



5. Let f :
� 7→ �

be the function defined by f(x) = x3. This function is surjective (since
every real number is the cube of some other real number), injective (since different real
numbers have different cubes), and bijective (since it is both surjective and injective).

1.3 Inverses

For every bijective function f , there is a related function called the inverse of f . Intuitively,
the inverse of f maps each element of the range back to the corresponding element of the
domain. In the example below, the inverse of the function on the left is the function on the
right. Note that the domain of the inverse is the range of f , and vice versa.

Formally, the inverse of a function f : A 7→ B is a function f−1 : B 7→ A that maps
each y ∈ B to the unique x ∈ A such that f(x) = y. A function has a well-defined inverse if
and only if it is bijective. An an example, the inverse of the function f :

� 7→ �
defined by

f(x) = 10x is the function f−1 :
� 7→ �

defined by f−1(x) = x/10.

1.4 Cube Roots

You can use bijections and inverses to compute cube roots in your head! First, let’s look at
the cubes of the first ten natural numbers:

0 0
1 1
2 8
3 27
4 64
5 125
6 216
7 343
8 512
9 729

4



Consider the function f mapping each number in the range 0 to 9 to the last digit of its
cube. For example, f(2) = 8, f(6) = 6, and f(7) = 3. Notice that f is a bijection. Now
suppose that we cube a two-digit number n = 10a + b. Then we have:

n3 = (10a + b)3

= 1000a3 + 300a2b + 30ab2 + b3

This shows that the last digit of n3 is the last digit of b3, which is f(b). Since f is a bijection,
it has an inverse. Therefore, the last digit of n3 determines the last digit of n.

You can use this fact to compute cube roots of perfect cubes up to a million in your head.
The bad news it that you must memorize the table above. Suppose that you are given a
perfect cube m.

• Take the last digit of m and apply the function f−1. This is the last digit of the cube
root.

• Drop the last three digits of m. Determine the first digit of the cube root by interpo-
lating in the table.

For example, suppose m = 474552. The last digit of the cube root is f−1(2) = 8.
Dropping the last three digits of m leaves 474. This lies between 343 and 512, so the first
digit of the cube root is 7. Therefore, 3

√
474552 = 78. You’ll have more hot dates than you

can handle, with this nifty trick to show off!

1.5 Cardinality

Every finite set A has a size or cardinality, which is denoted |A|. For example, |{a, b, c}| = 3.
The number of elements in a set seems like a fundamental property, not something requiring a
definition. However, without a careful definition of cardinality, one can never prove anything
about the sizes of sets. And we’ll be doing exactly that for much of the remainder of this
course. So here is the definition of cardinality:

Definition 3 The cardinality of a finite set A is defined to be n if there is a bijection from

A to the set {1, 2, 3, . . . , n}.

2 The Game of Nim

Nim is a game involving two players, some pennies, and mathematical induction. The game
begins with a bunch of pennies, arranged in one or more rows. For example, here we have
three rows of pennies:

5



◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

The two players take turns. On each turn, a player must remove one or more pennies,
all from a single row. The player who takes the last penny wins. For example, suppose that
the first player removes two pennies from the first row:

◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

Now the second player removes all the pennies from the last row, leaving this configuartion:

◦
◦ ◦ ◦ ◦

The first player then takes three pennies from the last row:

◦
◦

The second player is now in trouble; she must take exactly one of these two pennies. Either
way, the first player takes the last penny and wins the game.

There is a compact way to describe a configuration in Nim: list the number of pennies in
each row. For example, the starting configuartion in the game above is (3, 4, 5). The game
then passed through the configurations (1, 4, 5), (1, 4, 0), and (1, 1, 0).

2.1 Nimsums

A Harvard professor, Charles Bouton, discovered the optimal strategy for Nim in 1901.
Bouton’s strategy relies on a special mathematical operation called a Nimsum. The Nimsum
of natural numbers c1, . . . , ck is itself a natural number that is computed as follows:

• Regard c1, . . . , ck as binary numbers.

• The i-th bit of the Nimsum is the xor of the i-th bits of c1, . . . , ck.

(Xor is pronounced “eks-or” and is short for “exclusive-or”. The xor of bits b1 and b2 is
denoted b1 ⊕ b2 and defined as follows:

6



b1 b2 b1 ⊕ b2

0 0 0
0 1 1
1 0 1
1 1 0

As a consequence of this definition, the xor of bits b1, . . . , bk is 0 if the sum of the bi is even
and 1 if the sum is odd. For example, 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1, but 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0.)

As an example, the Nimsum of 3, 4, and 5 is computed as follows:

3 = 011
4 = 100
5 = 101

010 = 2

Here, we xor each column of bits to obtain the Nimsum 010, which is the binary represen-
tation of 2.

2.2 The Winning Strategy

Suppose that (c1, . . . , ck) is a configuration in Nim; that is, there are a total of k rows, and
the i-th row contains ci pennies. This configuration is called:

• safe if the Nimsum of c1, . . . , ck is nonzero

• unsafe if the Nimsum of c1, . . . , ck is zero

In this way, all possible configurations in Nim are now partitioned into two parts: the
safe configurations and the unsafe configurations. Bouton’s strategy is as follows:

• If you see a safe configuration on your turn, then select a move that leaves your
opponent with an unsafe configuration.

• If you see an unsafe configuration on your turn, you’re doomed. Every possible move
leaves your opponent with a safe configuration; select among them arbitrarily.

Thus, if the first player sees a safe position, she selects a move that leaves the second
player an unsafe position. Every move available to the second player then leaves the first
player with another safe position. This cycle repeats until the first player wins the entire
game.

7



2.3 An Example

Let’s use Bouton’s strategy in one example game before trying to prove a general theorem.
The bizarre French movie “Last Year at Marienbad” features a Nim game beginning in the
configuration (1, 3, 5, 7). Let’s analyze this configuration by computing the Nimsum:

1 = 001
3 = 011
5 = 101
7 = 111

000 = 0

Since the Nimsum is zero, this is a hopeless situation for the first player. In particular, no
matter what she does, the second player is left with a safe configuration; that is, one in
which the Nimsum is nonzero. For example, suppose that the first player removes the entire
fourth row. Then the Nimsum becomes:

1 = 001
3 = 011
5 = 101
0 = 000

111 = 7

This is a safe configuration. To maintain her advantage, the second player needs to leave
the first player in an unsafe position; that is, a position with Nimsum zero. Only one move
accomplishes this: removing three pennies from the third row:

1 = 001
3 = 011
2 = 010
0 = 000

000 = 0

Now the first player is again confronted with an unsafe position, one with a Nimsum
of zero. No matter what she does, the second player will be left with a safe position. For
example, suppose that the first player takes all three pennies from the second row. Then the
second player is left with:

1 = 001
0 = 000
2 = 010
0 = 000

011 = 3

8



Sure enough, this is a safe position. One again, the second player needs to leave the first
player in an unsafe position. Removing one penny from the third row accomplishes this:

1 = 001
0 = 000
1 = 001
0 = 000

000 = 0

The first player is clearly going to lose. She must take one of the two remaining pennies,
leaving the second player to take the other and win the game.

2.4 Proof of Correctness

Now let’s prove that Bouton’s strategy works. We’ll need two lemmas.

Lemma 1 If a player sees an unsafe configuration on her turn, then every possible move

leaves her opponent with a safe configuration.

Proof. Suppose that the player sees an unsafe configuration; that is, a configuration (c1, . . . , ck)
with Nimsum zero. Then the player must remove pennies from some row j, leaving c′j < cj

pennies behind. In binary, the numbers cj and c′j must differ in some bit position. But
then the Nimsum of the resulting configuration has a 1 in that bit position. Therefore, the
Nimsum is nonzero, meaning that the resulting configuration is safe. 2

Lemma 2 If a player sees a safe configuration on her turn, then she has a move that leaves

her opponent with an unsafe configuration.

Proof. Suppose that the player sees a configuration (c1, . . . , ck) with Nimsum s 6= 0.

Let i be the position of the most-significant 1 in the binary representation of s. Since
the i-th position of s is nonzero, there must be some row size cj that is nonzero in the i-th
position as well. Suppose that the player removes all but c′j pennies from the j-th row, where
c′j differs from cj in exactly those positions where s has a 1.

We must check that c′j, the number of pennies the player leaves behind, is less than cj,
the number of pennies originally in the j-th row. This is true because cj has a 1 in the i-th
position, c′j has a 0 in this position, and the two numbers agree in all higher positions.

Modifying the game configuration by changing cj by c′j reduces the Nimsum to zero,
because cj and c′j disagree in exactly those positions where the original Nimsum had a 1. 2

An example may clarify the preceding argument. Suppose that a player sees the config-
uration (1, 2, 4, 4). We can compute the Nimsum as follows:

9



1 = 001
2 = 010
4 = 100
4 = 100

011 = 3

The Nimsum is 011 in binary. The most significant 1 is in the second position from the right.
The number of pennies in the second row, 010 in binary, also has a 1 in this position. We
should leave 001 pennies in this row, since this differs from the number of pennies there now
(010) in every position where the Nimsum (011) has a 1. Now we compute the Nimsum of
the resulting configuration:

1 = 001
1 = 001
4 = 100
4 = 100

000 = 0

As expected, this is an unsafe position.

We’re ready to prove the main result.

Theorem 3 If the current player has a safe position, then she can guarantee a win. Other-

wise, the other player can guarantee a win.

The proof uses induction, with the statement of the theorem as the induction hypothesis.
This hypothesis is quite complicated! Suppose that we define three smaller propositions:

A = current player has a safe position

B = current player can guarantee a win

C = next player can guarantee a win

In these terms, the induction hypothesis is (A → B) ∧ (A → C). Induction hypotheses
containing implications are always a bit tricky, but this one has two implications! Some
square-bracketed comments are included in the proof to clairfy the structure.

Proof. The proof is by strong induction on n, the total number of pennies remaining. Let
P (n) be the proposition that in all Nim configurations with n pennies, if the current player
has a safe position, then she can guarantee a win and, otherwise, the other player can
guarantee a win.

First, suppose that n = 0; that is, no pennies remain. This is an unsafe position.
Therefore, the first implication is trivially true because the if-part is false. The second

10



implication is also true, because when the current player is left with no pennies, the other
player has just won the game. [In other words, the proposition (A → B) ∧ (A → C) is true
because A is false and C is true.]

Next, we must show that for all n ≥ 0, the propositions P (0), . . . , P (n) imply P (n + 1).
Assume P (0), . . . , P (n) and consider a configuration with n + 1 pennies remaining. Now we
must show two things:

1. If the configuration is safe, the current player can guarantee a win. Suppose that the
configuration is safe. By Lemma 2, the current player has a move that leaves the next
player with an unsafe configuration involving fewer than n + 1 pennies. If m < n + 1
pennies remain, then assumption P (m) implies that the player after the next player
(which is the current player) can guarantee a win. [This shows A → B.]

2. If the configuration is unsafe, the next player can guarantee a win. Suppose that the
configuration is unsafe. By Lemma 1, every move leaves the next player with a safe
configuration involving m < n + 1 pennies. The assumption P (m) then implies that
the next player can guarantee a win. [This shows A → C.]

Putting these arguments together gives P (n + 1). [That is, A → B and A → C together
imply (A → B)∧ (A → C).] Therefore, the theorem follows by the principle of induction. 2

11


