
Lecture 11 - Relations and Digraphs
6.042 - March 18, 2003

The idea of a binary relation was introduced in Lecture 2. In this lecture, we take a closer
look at relations and connect them to another class of mathematical objects called directed

graphs.

1 Relations

We begin by restating the definition of a mathematical relation, now in a somewhat more
general form.

Definition 1 A binary relation R from a set A to a set B is a subset of A × B.

Typically, we write aRb to indicate that (a, b) ∈ R. Previously, we limited our attention to
the case where A = B. For example, ≤ is a relation on the set

�
×

�
:

′ ≤′ = { (0, 0), (0, 1), (0, 2), . . . , (1, 1), (1, 2), . . .}

We can define nonmathematical relations as well. For example:

“is taking” ⊆ {students at MIT} × {classes at MIT}

“likes” ⊆ {students at MIT} × {students at MIT}

“lives in the same room with” ⊆ {students at MIT} × {students at MIT}

1.1 Properties of Relations

As we noted in Lecture 2, some relations have special properties.

Definition 2 A binary relation R ⊆ S × S is:

1. reflexive if aRa for all a ∈ S

2. symmetric if aRb implies bRa for all a, b ∈ S

3. transitive if aRb and bRc imply aRc for all a, b, c ∈ S
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4. antisymmetric if aRb and bRa if and only if a = b for all a, b ∈ S

The antisymmetric property is new. Despite the names, symmetric and antisymmetric
relations are not opposites. For example, the relation {(x, x) | x ∈ S} on a set S is both
symmetric and antisymmetric.

Relations with the first three properties listed above are especially important.

Definition 3 A relation R ⊆ S × S that is reflexive, symmetric, and transitive is called an

equivalence relation.

For example, the relation “lives in the same room with” is reflexive, symmetric, and
transitive and therefore is an equivalence relation. An equivalence relation is naturally
associated with a partition of the set S.

Definition 4 A collection of disjoint, nonempty sets S1, . . . , Sn with union S is called a

partition of S. Each set Si is called a part of the partition1.

For example, the relation “lives in the same room with” partitions the set of MIT students
into parts S1, . . . , Sn, where each Si is the set of all students living in a particular room. As
another example, the relation “has the same absolute value” partitions the integers into the
following parts:

{0}, {−1, 1}, {−2, 2}, {−3, 3}, {−4, 4}, . . .

In general, if R is an equivalence relation, then xRy holds if and only if x and y are in the
same part of the associated partition.

1.2 Representing Relations

For every relation, there is a corresponding mathematical object called a directed graph.

Definition 5 A directed graph G is a pair (V, E) where E ⊆ V × V . The elements of the

set V are called vertices, and the elements of the set E are called edges.

In other words, a directed graph is just a set V together with a relation E on that set. A
directed graph is often called a digraph for short. Directed graphs are nice, because they are
easy to draw. For example, two digraphs are depicted below:

1This is a lie. Actually, each set Si is called an “equivalence class”, but we like the name “part” better.

So we’re going to use “part”. You can’t stop us. Don’t even try.
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The diagram on the left corresponds to the relation:

{ (a, a), (a, b), (a, c) }

The diagram on the right corresponds to the relation:

{ (x, x), (y, y), (z, z), (x, y), (y, z), (z, x)}

An edge in a directed graphs is often specified with an arrow notation; for example, the
edge (x, y) would be denoted x → y. For example, the first graph contains the edges a → a,
a → b, and a → c. This is the same notation we use for logical implications, so we’ll avoid
using them both in the same context. An edge from a vertex back to itself, such as a → a,
is called a self-loop.

Many properties of a relation are immediately apparent in a picture of the corresponding
digraph. In particular, a relation is:

1. reflexive if every vertex has a self-loop.

2. symmetric if for every edge a → b, there is an opposing edge b → a.

3. transitive if for every pair of edges a → b and b → c, there is a “shortcut” a → c.

4. antisymmetric if every vertex has a self-loop and there is no pair of edges a → b and
b → a where a and b are distinct.

For example, the second digraph illustrated above is reflexive and antisymmetric, but not
symmetric or transitive.

1.3 Tournaments

A tournament is a directed graph in which:

• For every pair of distinct vertices u and v, there is either an edge u → v or v → u, but
not both.
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• There are no self-loops.

One possible tournament with four vertices is shown below:

There is a natural correspondence between tournament digraphs and round-robin tour-
naments in sports. (In a round-robin tournament, each player has a match against every
other player.) One can imagine that the vertices are players, and the results of the matches
are indicated by the orientations of the edges. For example, if player u beats player v, then
the digraph has the edge u → v; otherwise, if v beats u, then the digraph has the edge
v → u.

2 The King Chicken Theorem

There are n chickens in a farmyard. For each pair of distinct chickens, either the first pecks
the second or the second pecks the first, but not both. We say that chicken u virtually pecks

chicken v if either:

• Chicken u pecks chicken v.

• Chicken u pecks some other chicken w who in turn pecks chicken v.

A chicken that virtually pecks every other chicken is called a king chicken2.

We can model this situation with a tournament digraph. The vertices are chickens, and
an edge u → v indicates that chicken u pecks chicken v. In the tournament below, three of
the four chickens are kings.

king not a king

kingking

Now we’re going to prove a theorem about chicken tournaments. The result is not very
useful, but the proof involves induction and digraphs, two of the most common mathematical
tools in computer science.

2But if a chicken is a king, isn’t it male? And if it is male, isn’t it a rooster? Oh well.
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Theorem 6 (King Chicken Theorem) Every n-chicken tournament has a king, where

n ≥ 1.

Proof. The proof is by induction on n, the number of chickens in the tournament. Let P (n)
be the proposition that in every n-chicken tournament, there is at least one king.

First, we prove P (1). In this case, we can safely say that the lone chicken virtually pecks
every other chicken, since there are no others. Therefore, the only chicken in the tournament
is a king, and so P (1) is true.

Next, we must show that P (n) implies P (n + 1) whenever n ≥ 1. Suppose there is a
chicken tournament with chickens v1, . . . , vn+1. If we ignore the last chicken for the moment,
then we are left with a tournament among the first n chickens. By our induction hypothesis,
P (n), this tournament has a king chicken, vk.

Let D1 be the set of chickens pecked by the king, vk. Let D2 be the set of chickens
virtually pecked by the king, but not pecked directly. Thus, each chicken in D2 was pecked
by some chicken in D1. Since vk is a king, this accounts for all the chickens; that is, {vk},
D1, and D2 form a partition of the set of chickens {v1, . . . , vn}. The situation is represented
schematically below.

k

1

2D

D
n+1

v

v

Now we reintroduce the last chicken, vn+1, and show that the full tournament on n + 1
chickens has a king. There are two cases:

1. Suppose that vk pecks vn+1. Then vk is a king of the full tournament.

2. Otherwise, vn+1 pecks vk. There are then two subcases:

(a) If some chicken in D1 pecks vn+1, then vk virtually pecks vn+1 and so vk is again
a king of the full tournament.

(b) Otherwise, vn+1 pecks every chicken in D1. In this case, vn+1 is a king of the
full tournament; he directly pecks vk and all the chickens in D1, and he virtually
pecks all the chickens in D2.

In every case, a chicken tournament with n + 1 chickens has a king, and so P (n + 1) holds.
Thus, by the principle of induction, the claim is proved. 2
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