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Quiz 2 Solutions

Problem 1. [16 pts] Next to each statement, circle either true or false.

1. true false ((A → B) ∧ (B → C) ∧ (C → A)) → (A ∨ B ∨ C) is a tautology.

2. true false (∃x ∀y P (x, y)) → (∀y ∃x P (x, y)) is true for every domain of
discourse and every predicate P .

3. true false The relation ≈ on the set
�
×

�
defined by (x, y) ≈ (x′, y′) iff

x = x′ or y = y′ is an equivalence relation.

4. true false If f : � → � and g : � → � are both injective functions, then
the function h : � → � defined by h(n) = f(n) + g(n) is also
injective.

5. true false If a finite directed graph contains no cycles, then some vertex has
no outgoing edges. (A self-loop is considered a cycle.)

6. true false Let R1 and R2 be equivalence relations over a set S, and let ∼ be
a relation over S such that x ∼ y iff x R1 y and x R2 y. Then ∼
is also an equivalence relation.

7. true false Every acyclic, connected, undirected graph without self-loops and
with exactly 175 vertices has exactly 174 edges.

8. true false Suppose that q and r are states of a state machine and q → r is a
valid transition. If P (q) is false and P (r) is true, then P cannot
be an invariant.

Solution.

1. false. If A, B, and C are all false, then the expression on the left side of the implication
is true, but the expression on the right side is false. Therefore, the whole statement is
false.

2. true. Suppose that the left side of the implication is true. Then there exists some x0

such that P (x0, y) is true for all y. This implies that for all y, there exists an x (namely,
x0) such that P (x, y) is true. Thus, the right side is holds. Therefore, the implication
always holds.

3. false. The relation ≈ is not transitive. In particular, (0, 0) ≈ (0, 1) and (0, 1) ≈ (1, 1),
but (0, 0) 6≈ (1, 1).

4. false. Let f(n) = n and define g as follows:

g(n) =

{

100 − n (for n ≤ 100)
n (for n > 100)

Then h(0) = h(1) = . . . = h(100) = 100. Thus, f and g are injective, but h is not.



6.042J/18.062JQuiz 2 Solutions 2

5. false. The empty graph (no nodes or vertices) contains no cycle, and all of its (zero)
nodes have outgoing edges. It turns out that this was unintentionally a trick question as
the statement is true for any graph other than the empty graph, so everybody got full
credit for this question. For a nonempty graph, the statement is true: pick a starting
vertex and start following directed edges (you can always follow directed edges because
each node has an outgoing edge). If you ever revisit a node, the graph is cyclic; if you
never do, it is not finite.

6. true. The relation ∼ is reflexive, symmetric, and transitive; one can check that it
inherits all these properties from R1 and R2. If we take symmetry as an example, x ∼ y
implies y ∼ x, since x R1 y and x R2 y imply y R1 x and y R1 x.

7. true. Every acyclic, connected, undirected graph is a tree. And for every tree, the
number of vertices exceeds the number of edges by 1.

8. false. An invariant is something which, if it is true, will remain true as the state
machine follows transitions. By this definition, it is perfectly possible for an invariant
which is initially false to become true at a later time (it will then remain true forever).

Problem 2. [14 pts] Use induction to prove that the following inequality holds for all
integers n ≥ 1.

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
≥

1

2n

Solution.

Proof. The proof uses induction. Let P (n) be the proposition that:

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
≥

1

2n

First, we prove P (1). In this case, both side of the inequality are equal to 1/2, and the
inequality 1/2 ≥ 1/2 holds. Next, for each n ≥ 1, we must show that P (n) implies P (n+1).
Assume that P (n) is true. Then we can reason as follows:

1 · 3 · 5 · · · (2n − 1)(2n + 1)

2 · 4 · 6 · · · (2n) · (2n + 2)
≥

1

2n
·
2n + 1

2n + 2

>
1

2n + 2
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The first step uses the induction hypothesis, P (n). The second step uses the fact that
(2n + 1)/(2n) > 1 for all n ≥ 1. Therefore, by induction, the proposition P (n) is true for all
n ≥ 1, and the claim is proved.

Problem 3. [12 pts] For the following problems, the domain of discourse is the set of all
the people in the world. The predicate L(x, y) holds if and only if x truly loves y.

(a) [6 pts] Translate the statement below into an English sentence that is as simple
as you can make it.

¬∃x ( ¬∃y (L(y, x) ∧ x 6= y) )

Solution. Everyone is truly loved by someone else.

(b) [6 pts] Translate the statement below into logic notation.

There is exactly one person in the world that truly loves himself/herself.

In your translation, use only variables, the predicate L, and these symbols:

∃ ∀ ¬ ∧ ∨ → ↔ ( , ) =

Solution. Many solutions are possible. Here is one:

∃x (L(x, x) ∧ ∀y (L(y, y) → x = y))

Problem 4. [14 pts] In this problem, the term graph refers to an undirected graph without
self-loops. Let G = (V, E) be a graph such that every vertex has degree at most k. Suppose
that k + 1 colors are available. Use induction to prove that there is a way to assign a color
to each vertex of G so that for every edge in G, the two vertices joined by that edge are
assigned different colors.

Solution. The proof is by induction on the number of vertices in G. Let P (n) be the
proposition that every n-vertex graph such that every vertex has degree at most k can be
colored with k + 1 colors so that the endpoints of every edge are colored differently. First,
note that P (0) is true; if the graph contains no vertices, then the claim holds vacuously.

Next, for all n ≥ 0, we must prove that P (n) implies P (n+1). Assume that P (n) is true and
consider a graph G with n + 1 vertices and maximum degree k. Pick one vertex v ∈ V . Let
G′ be the graph obtained from G by deleting the vertex v and all edges that touch v. Now,
the degree of each vertex in G′ is no greater than the degree of the corresponding vertex in
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G. Therefore, the maximum degree in G′ is at most k. Therefore, P (n) implies that G′ can
be colored with k + 1 colors. Color each vertex in G in the same way as the corresponding
vertex in G′. All that remains is to color the vertex v. There are k + 1 colors available, and
v is joined by edges to at most k other vertices. Therefore, one can color v differently from
all the vertices to which it is joined by an edge. Therefore, P (n + 1) holds, and the claim is
proved by induction.

Problem 5. [12 pts] Solve the following problems using the Pigeonhole Principle.

(a) [6 pts] A 100-point exam will be given to a class with 128 students. The exam
can be designed so that every student receives a score in the range from k to
100. How large must k be to ensure that at least three students receive the same
score? Specify the “pigeons” and the “holes” used in your argument.

Solution. The pigeons are the 128 exams, and the holes are the possible scores
from k to 100. Each exam is assigned to the score it receives. There are 100−k+1
possible score. By the Pigeonhole Principle, three students must receive the same
score if:

128 ≥ 2 · (100 − k + 1) + 1

k ≥
75

2

Since k must be an integer, we must choose k ≥ 38.

(b) [6 pts] A dresser drawer in a dark room contains socks of n different colors. In
particular, there are ki ≥ 2 socks of the i-th color for 1 ≤ i ≤ n. What is the
minimum number of socks that must you take from the drawer to be certain that
you get at least one matching pair? Again, specify the “pigeons” and the “holes”.

Solution. The pigeons are the socks taken from the drawer, and the holes are
the n colors. Each sock is assigned to its color. By the Pigeonhole Principle, if
n + 1 socks are taken, then there must be two socks of the same color. Taking
n socks would not be sufficient as each sock could then be of a different color.
Therefore, n + 1 is the minimum number of socks that must be taken from the
drawer.

Problem 6. [16 pts] Each monk entering the Temple of Forever is given a bowl with 15
red beads and 12 green beads. Each time the Gong of Time rings, a monk must do one of
two things:
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1. If he has at least 3 red beads in his bowl, then he may remove 3 red beads and add 2
green beads.

2. He may replace each green bead in his bowl with a red bead and replace each red bead
in his bowl with a green bead.

A monk may leave the Temple of Forever only when he has exactly 5 red beads and 5 green
beads in his bowl.

(a) [4 pts] Model the life of a monk in the Temple of Forever as a state machine.
Specify a set of states Q, a set of start states Q0, and a transition relation δ.

Solution. The set Q of states is � × � . The set of start states is Q0 = {(15, 12)}.
The transition relation δ contains the following transitions for every state (r, g) ∈
Q.

(r, g) → (r − 3, g + 2) (if r ≥ 3)

(r, g) → (g, r)

(b) [4 pts] Let r be the number of red beads in a monk’s bowl, and let g be the
number of green beads. Is the property “r 6= g” an invariant? Justify your
answer.

Solution. No. The property holds when the monk has 8 red beads and 3 green
beads in his bowl. After a transition of the first type, he has 5 red beads and 5
green beads so the property no longer holds. Therefore, the this property is not
an invariant.

(c) [4 pts] Is the property “r − g is equal to 5k − 3 or 5k + 3 for some k ∈ � ” an
invariant? Justify your answer.

Solution. Yes. Suppose that the property holds for state (r, g). Then there
exists a k such that r − g is equal to 5k + 3 or 5k − 3. Now we must check that
the property is maintained under the two types of transition.

1. After a transition of the first type, the property still holds. If r−g = 5k +3,
then g − r = 5(−k) − 3; if r − g = 5k − 3, then g − r = 5(−k) + 3.

2. After a transition of the second type, the property still holds. If r − g =
5k + 3, then (r − 3) − (g + 2) = 5(k − 1) + 3; if r − g = 5k − 3, then
(r − 3) − (g + 2) = 5(k − 1) − 3.

Therefore, the property is an invariant.
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(d) [4 pts] Use the Invariant Theorem to prove no one ever leaves the Temple of
Forever.

Solution. The invariant above holds for the start state, since 15− 12 = 5 · 0+3.
However, it does not hold for a bowl with 5 red beads and 5 green beads, because
5− 5 = 0 is not of the form 5k ± 3. Therefore, this state is not reachable by the
Invariant Theorem.

Problem 7. [16 pts] This problem concerns solutions to the following equation:

4x3 + 2y3 = z3

(a) [3 pts] Suppose that x, y, and z are positive integers that satisfy the equation.
Show that z must be even.

Solution. If x and y are integers, then 4x3 + 2y3 is even. Therefore, z3 is even.
If z was odd, then z3 would be odd, thus we must conclude that z is even.

(b) [3 pts] Show that y must be even.

Solution. Since z is even, z3 is a multiple of 4. This means that z3 − 4x3 is a
multiple of 4. Therefore, 2y3 is a multiple of 4. This means that y3 is even, and
so y is even (y can’t be odd or y3 would be odd as well.

(c) [3 pts] Show that x must be even.

Solution. Since z and y are even, z3 − 2y3 is a multiple of 8. Therefore, 4x3 is
a multiple of 8. This means that x3 is even. Therefore, x is even (x can’t be odd
or x3 would be odd as well).

(d) [7 pts] Use the well-ordering principle to prove that there are no positive integer
solutions to the equation:

4x3 + 2y3 = z3

Solution. Suppose that the claim is false. Let S be the set of positive integers
x for which there exist positive integers y and z that solve the equation. By
assumption, S is not empty. Therefore, by the well-ordering principle, S contains
a smallest element x′. Let y′ and z′ be corresponding values of y and z that give
a solution. By the preceding arguments, x′, y′, and z′ must be even. Thus
x′/2, y′/2, and z′/2 are all positive integers. Dividing both sides of the original
equation by 23 shows that these values also satisfy the equation. Therefore x′/2
is in S, contraditing the definition of x′ as the smallest element of S. Therefore,
the orginal supposition is wrong, and the claim is true.


