Massachusetts Institute of Technology Lecture 4
6.042J/18.062J: Mathematics for Computer Science February 10, 2000
Professors David Karger and Nancy Lynch

Proof by Induction (cont’d) & Structural Induction
Today we continue demonstrating proofs by (ordinary and strong) induction.

1 Tournaments

An Internet gaming company is conducting a chess tournament on the Internet. It is run round
robin, not by elimination. That is, everyone plays everyone exactly once. And we assume no ties.
We can represent the results nicely by arrows, e.g.:

A beats B, C, D
B beats D
C beats D
D beats C

(This structure is called a “digraph”. We will study them carefully soon.)

Now, the gaming company wants to use this information to make some decisions, e.g., award a first
prize and rank everyone. It wants to do this in such a way that its customers don’t complain about
the rankings being unfair. There are some problems with doing this.

1.1 Cycles

The first problem is that the tournament graph can contain cycles. For example: above, B beats D
beats C beats B. If there’s a cycle, then any ranking method is a least a little problematic: someone
who beat someone else would be ranked lower.

Of course, the company has no power to avoid cycles in play results. But the gaming company
might hope that “most of the time”, when there is a cycle, it’s very big (so the people involved
aren’t likely to discover it). However, tournaments have an unfortunate property:

Theorem 1.1 Any tournament that contains any cycle, contains a cycle of length 3 (3-cycle).
That is, three players, (e.g., B, C, D, above) have an “inconsistent” set of results.
This can be proved by ordinary induction, where P(n) is the predicate “Any tournament that

contains an n-cycle contains a 3-cycle.”

Prove: Vn > 3(P(n))
1. (Base) P(3) Trivial by assumption.
2. (Inductive step) Vn > 3(P(n) = P(n+ 1))

2 Lecture 4: Proof by Induction (cont’d) & Structural Induction

1. Fixn >3

2. Assume P(n)

3. P(n+1)
1. Fix T, a tournament, and p; — ps — ... — pp+1 — p1, an n + l-cycle in T
2. T contains a 3-cycle. 777
3. QED Implication, UG

4. QED Implication, UG

3. QED

How can we find a 3-cycle in T'7 Consider the example of a 5-cycle p1 — pa — p3s — ps — ps.
To get a 3 cycle, notice that p; and ps have an arrow, one way or the other. If it’s from p3 to
p1, then pi, pe, ps form a cycle. If it’s the other way, then we can omit po and still have a cycle
p1 — p3 — p4 — ps. Then we can use induction on the smaller cycle. This generalizes:

2. T contains a 3-cycle.
1. If p3 — p1 then T contains a 3-cycle. Use p; — ps — p3 — p1.
2. If p1 — ps3 then T contains a 3-cycle.
1. Assume p; — p3.

2. T contains an n-cycle. Use p1 — p3 — p4 — Pn+1 — P1-
3. T contains a 3 cycle. By inductive hypothesis (2.2)
3. QED Cases

A detail to be careful about here: This argument depends on the fact that the arrow we add
between p; and p3 is not already part of the original cycle. This is true because we know that the
original cycle had length n + 1, which is at least 4. So there is a py between p3 and p; in the cycle.

1.2 Locally fair rankings

The gaming company decides that, although they cannot avoid inconsistent orders, they would at
least like to make the ranking “locally fair”, meaning that if one player p is ranked immediately
ahead of another player ¢, then p must have beaten ¢. It’s OK if the 5th ranked player loses to the
9th ranked player, but we want to be sure the 5th ranked player beats the 6th ranked player. (The
company might want to tell each player who the players were that are ranked immediately above
and below him, and don’t want someone to complain that the guy ranked above him is someone
he beat.)

They are happy to discover:

Theorem 1.2 Theorem: Any tournament has a locally fair ranking.

We will prove the theorem by strong induction, where P(n) says “any n-player tournament has
a locally fair ranking”. The strategy is to “split” the players into those that beat and those that
lose to a particular player x. We then rank those two subsets separately, by using the inductive
hypothesis. This works because we can consider each of the two sets as a “subtournaments.” Then
we put the rankings together.

Lecture 4: Proof by Induction (cont’d) & Structural Induction 3

Prove: Vn > 1(P(n))

1. (Base) P(1) Obvious—just one player to be ranked.
2. (Inductive step) Vn > 1[(Vi,1 < i <n(P(n))) = P(n+1)]

1. Fixn>1

2. Assume Vi, 1 < i < n(P(i)).

3. P(n+1)

1. Fix any n + 1-player tournament 7.
2. T has a locally fair ranking.
1. Choose x to be any player, B the set of players that beat z, and
L the set of players that lose to x.

2. B has a locally fair ranking. Inductive assumption (2.2).
3. L has a locally fair ranking. Inductive assumption (2.2).
4. Define a ranking R of all the players by: B ranking, then x, then L ranking.
5. R is a locally fair ranking for T
6. QED EG
3. QED UG
4. QED Implication, UG
3. QED Strong induction

1.3 Locally fair rankings and number of wins

For a while, the customers are happy with just locally fair rankings. But then a game comes up
where local fairness doesn’t work out so well:

Example:

A beats B

B beats C

C beats A,D
D beats A,B.E
E beats A,B,C
(draw)

Here, A,B,C,D,E is a locally fair ranking. However, it’s in the reverse order according to num-
ber of wins. This is clearly a problem. Now it occurs to the company that it would be nice if the
rankings could also be consistent with numbers of wins. Unfortunately, we can’t get this at the
same time as local fairness.

Example: 6 players

A beats C,D,E,F (4 wins)

B beats A E,F (3 wins)

C beats B,F (2 wins)

D beats C,B (2 wins)

E beats C,D (2 wins)

F beats D,E (2 wins)

Ordering consistently with number of wins would mean A would have to be ranked immediate-
ly ahead of B. But B beats A, violating local fairness.

So then they decide they will be happy to settle for a fair ranking in which the highest ranked
player has the most wins (he may be tied for most wins). This would rule out the bad example

4 Lecture 4: Proof by Induction (cont’d) & Structural Induction

above.
It turns out this is possible: In fact, in the event of a tie for most wins, the company even has the
option of choosing which best player is ranked first:

Theorem 1.3 For any n-player tournament 7" and any z that has the largest number of wins in
T, there exists a locally fair ranking with z ranked first.

For the proof, take P(n) to be the statement of the theorem.
Prove: Vn > 1(P(n))

This can be proved by induction, but the inductive step is more complicated than in the previous
proof.

Here’s a first proof attempt. We’'ll try a proof like the previous one, this time splitting on some x
that loses to z. We split all-but-x into B and L as before, based on their records with respect to
(w.r.t.) . We know that z is in B, because it beats . Now we try to use the inductive hypothesis
to rank B while keeping z first, and to rank L. Then we combine as before.

This all sounds plausible—but it’s wrong. Applying the inductive hypothesis requires that z have
the best won-lost record in the “subtournament” involving just the B elements. But it might not.
Example:

Players A, B, x, and a lot of others

A and B beat x

x beats all of the others

B beats A

A beats all the others

all the others beat B

It doesn’t matter what happens among the others.

A has the best record overall, but in the two-player subtournament, it is worse than B.

This is an example of one of the most common problems in an inductive proof. When we break
down the problem to a smaller one, we forget to check that all the hypotheses in the theorem
remain true. Here, in the smaller problem we lost the hypothesis that z beat the most players.

So let’s try different approach. It turns out that a correct proof can be given using ordinary (not
strong) induction. Recall P(n): For any n-player tournament 7' and any z that has the largest
number of wins in 7', there exists a locally fair ranking with z ranked first.

Prove: Vn > 1(P(n))
1. (Base) P(1) Only one possibility.
2. (Inductive step) Vn > 1[P(n) = P(n+ 1)]
1. Fixn > 1.
2. Assume P(n).
3. P(n+1).
1. Fix T, an n 4 1-player tournament, and z, a player with the most wins.

Lecture 4: Proof by Induction (cont’d) & Structural Induction 5

2. d a locally fair ranking of T with z first. 777

3. QED
4. QED
3. QED

The key step will bre

UG
Implication, UG
Induction

ak down into cases, based on whether or not z lost any matches. The case

where z won everything is easy; the other case is tricky. Here’s the easy case:

2. d a locally fair ranking of T with z first.

1. If z is undefeated in T then 3 a locally fair ranking of T" with z first.
1. Assume z is undefeated in T'.
2. Choose R to be a locally fair ranking of all-but-z.
Previous theorem says this exists, EI
3. z then R is a locally fair ranking of T
4. d a locally fair ranking of T" with z first.
EG
5. QED Implication
2. If z is defeated by someone then 3 a locally fair ranking of T" with z first.
Valdle
3. QED Cases

And the tricky case:

2. If 2
1
2

3.

9

is defeated by someone then 3 a locally fair ranking of 1" with z first.
. Assume z is defeated by someone.
. Choose z to be someone who defeated z.
z has the best record in the subtournament involving all-but-z.
z had the best record in T,
no wins are removed.
. 3 ranking of subtournament having z first.
Inductive hypothesis, z has best record.
. Choose R to be a ranking of all-but-z having z first.
EI
. In T, z is defeated by someone. z was defeated, and z’s record in T" can’t
be better than z’s.
. Define ranking S to be R, with x inserted right after the lowest-ranked player
that beats x.
. S is a locally fair ranking of T'.
R is locally fair, = is beaten by the player
ranked just above it and beats all ranked
below it.
. z is first in S. z is first in R, and z is not inserted
at the top.

10. 3 a locally fair ranking of T with z first.

S works, EG

QED Implication

6 Lecture 4: Proof by Induction (cont’d) & Structural Induction

2 Induction, Strong Induction, and Well-Ordering

2.1 Induction vs. strong induction

Strong induction looks like a more powerful proof method than ordinary induction, because it allows
more information to be assumed in the inductive step. But it’s not really stronger—anything that
can be proved with strong induction can also be proved with ordinary induction. Here’s an example.

Recall the proof that every natural number > 2 can be written as product of primes (factored into
primes). We used strong induction, where P(n) was the predicate “n can be factored into primes”.
The inductive step involved writing n 4+ 1 = ab, and using P(a) and P(b) to get factorizations for
a and b, then multiplying them.

Now we’ll change this to an ordinary inductive proof. Define a new predicate Q(n) to be Vi, 2 <
i <n (i can be factored). We’ll prove Q(n) by ordinary induction:

Q(2): Same as P(2), use same proof.

Qn) = Q(n+1):
Our goal is now to show: Vi,2 <i <n+1 (i can be factored).
What we can assume is: Vi,2 < i < n (i can be factored).

Notice that all the needs to be shown is that n 4+ 1 can be factored (the others already assumed).
And we can assume factorizations of all smaller numbers. So the old strong induction step can be
used to show this.

This idea is quite general. We can always convert a strong inductive proof of Vn > k(P(n)) to an or-
dinary inductive proof. Just define Q(n) to be Vi, k <1i < n(P(i)), thatis, P(k)AP(k+1)A---AP(n).

Base case: Show Q(k), same as P(k), which has already been shown as part of the strong induction
proof.

Inductive step: Show Q(n) = Q(n+ 1), in other words, P(k) AP(k+1)A---AP(n)= P(k) A
Pk+1)A---ANP(n)ANP(n+1).

This really amounts to showing P(k)AP(k+1)A---AP(n) = P(n+1). But this has already
been shown in the strong induction proof.

Of course, any ordinary inductive proof is a strong induction proof has well. We are allowed to
assume P(1),...,P(n) to prove P(n + 1), but all we actually use is P(n).

Induction and strong induction are said to be “equivalent” proof rules, in that each can prove the
same things (in the context of some standard number axioms and logical deduction rules).

2.2 Well-ordering

There is another variation of induction that is sometimes useful: well-ordering. The well-ordering
axiom looks nothing like the induction axiom:

Axiom Every nonempty subset S C N has a smallest element.

Lecture 4: Proof by Induction (cont’d) & Structural Induction 7

The well-ordering axiom is often called the well-ordering principle. It may seem obvious and useless!

As for obvious, note that this axiom would be false if the set of natural number, A/, were replaced
by, say, the set of rational numbers. The subset S consisting of positive rational numbers has no
smallest element.

As for useless, it turns out the well-ordering is just as powerful as our very best weapon, strong
induction!

For example: we can reprove the theorem about 3-cycles using well-ordering instead of induction.
Theorem 2.1 Any tournament that contains a cycle contains a 3-cycle.

Proof. Assume tournament 7' contains a cycle. Let n be the smallest cycle length (there is some
smallest, by well-ordering). n must be at least 3. If it’s 3, then we’re done. So suppose n > 4.
Consider a cycle with this length. Now consider p; and p3 as before. Whichever way the arrow goes,
we can use it in constructing a shorter cycle in T' (as we did before). This is a contradiction, since
we assumed that n is the smallest cycle length. Since we got a contradiction to our assumption
that n > 4, we must have n = 3 as claimed. []

This proof is really very similar to the other one. In general, well-ordering is equivalent to induction
(and strong induction), in that they can be used to prove the same theorems. Again the transfor-
mation is standard. Given an induction proof for proposition P(n), we can build a well ordering
proof as follows. Suppose for the purpose of contradiction that P(n) is not true for every n. That
means it is false for some n. So consider the set of elements n for which P(n) is false. We've just
assumed this set is nonempty. So by well ordering it has a smallest element, say k. This means
P(k —1) is true (else £ — 1 would be in our set). But in our original inductive proof for P(n), we
showed that P(k — 1) = P(k) (this is the inductive step). So P(k) must be true. This is a
contradiction to our choice of k, which shows that our original assumption (that P(n) is false for
some n) is false.

3 Structural induction

Structural induction is a variant of induction for proving things about other data types besides N,
in particular, about data types that are defined recursively. The induction is based explicitly on
the recursive structure of the definition.

3.1 Some recursive definitions for data types

Fully parenthesized Boolean algebra expressions (with ands, ors, nots only).

Definition 3.1 The set F' of fully parenthesized Boolean algebra expressions satisfies:

1. The symbols 0 and 1 are in F'.

2. If e and ¢’ are in F' then the expression (e A €’) is in F.
3. If e and ¢ are in F then the expression (e Ve') isin F.
4

. If e is in F then the expression (—e) is in F.

8 Lecture 4: Proof by Induction (cont’d) & Structural Induction

5. F' contains nothing else.

And here is one for binary trees.
Definition 3.2 The set T of binary trees satisfies:

1. A single node (just a dot) is in 7.

2. If tis in T, then the structure formed from ¢, a single new node, and an arrow labeled “left”
from the new node to t, is also in 7.

3. If tisin T, then the structure formed from ¢, a single new node, and an arrow labeled “right”
from the new node to ¢, is also in 7.

4. If t and t’ are in T', then the structure formed from ¢, ¢, and a single new node, with an arrow
labeled “left” from the new node to ¢ and another arrow labeled “right” from the new node
to t/, is also in T

Since the descriptions above are wordy, it’s nice to introduce some notation, like makeleft(t) to
denote the thing built up from ¢ in the first recursive step. Likewise, makeright(t), makeboth(t,t’).

And here is one for strings over an alphabet A.

Definition 3.3 The set S of (finite length) strings over alphabet A satisfies:
1. A, the empty string, is in S.
2. If sis in the set S and a € A, then sa is in S.
3. S contains nothing else.

This is a recursive description (definition) of the set of strings. Notice that it includes every (finite
length) string. Moreover, every string has a unique derivation using these rules.

3.2 Inductive proofs based on recursive data type definitions

Structural induction is used to prove a property of all the elements of some recursively-defined data
type. The proof consists of two steps:

e Prove for the “base cases” of the definition.

e Prove for the result of any combination rule, assuming that it is true for all the parts.
For Boolean expressions:
Prove: Ve € F'(P(e))

. (Base) P(0)
. (Base) P(1)

Inductive step) Ve,e’ € F(P(e) A P(¢') = P((e A€')))
YAP(e) = P(leVe)))
. (Inductive step) Ve € F(P(e) = P((—e)))

1

2

3. (

4. (Inductive step) Ve, e’ € F(P(e
)

6

. QED Structural induction on Boolean expressions

Lecture 4: Proof by Induction (cont’d) & Structural Induction 9

For binary trees:

Prove: Vt € T(P(t))

. (Base) P(n), where n is the single-node tree.

. (Inductive step) Vt € T(P(t) = P(makeleft(t)))

. (Inductive step) Vt € T(P(t) = P(makeright(t)))

. (Inductive step) Vt,t' € T(P(t) A P(t') = P(makeboth(t,t')))

. QED Structural induction on binary trees

QU W N =

For strings over alphabet A = {0,1}:

Prove: Vs € S(P(s))

1. (Base) P()\)

2. (Inductive step) Vs € S(P(s) = P(s0))

3. (Inductive step) Vs € S(P(s) = P(sl))

4. QED Structural induction on strings.

You can see how this would extend to different alphabets.

An example for each of the data types:
Theorem 3.4 Every Boolean expression has the same number of left and right parentheses.

Proof. Define P(e): Expression e has the same number of left and right parentheses.

Prove: Ye € F'(P(e))

1. (Base) P(0) The expression 0 has no parens.
2. (Base) P(1) No parens
3. (Inductive step) Ve, e’ € F(P(e) AN P(¢') = P((e N €))

1. Fix e,e’ € F.

2. Assume P(e) A P(€'), that is, each of e and €’ has the same number
of left and right parens.
3. P((e A€')), that is, the expression e A ¢’ has the same number of
left and right parens.
By inductive hypothesis (3.2), and the fact
that we’re adding one left and one right
paren.
4. QED Implication, UG
4. (Inductive step) Ve, e’ € F(P(e) A P(¢/) = P((eV ¢€'))
Similar to the previous case.
5. (Inductive step) Ve € F(P(e) = P((—e)) Similar to the previous case.
6. QED Structural induction on Boolean expressions

Be careful of confusion of parens above. Some are used for P, some are parts of the actual Boolean
expressions...this really needs better notation. [|

Theorem 3.5 The number of edges in any binary tree is exactly one fewer than the number of
nodes.

10 Lecture 4: Proof by Induction (cont’d) & Structural Induction

Proof. Define P(t): Binary tree ¢ has exactly 1 fewer edge than nodes. We are using the notation
nodes(t), edges(t). The key is that the inductive steps all preserve the “deficit” of 1. For instance,
combining two trees involves adding two edges and one node; since each subtree had a “deficit” of
1, this maintains the deficit of 1:

Prove: Vt € T(P(t))
1. (Base) P(n), where n is the single-node tree. 0 edges and 1 node
2. (Inductive step) Vt € T(P(t) = P(makeleft(t))
1. Fix ¢.
2. Assume P(t), that is, |edges(t)| + 1 = |nodes(t)|.
3. P(makeleft(t)), that is, |edges(makeleft(t))| + 1 = |nodes(makeleft(t))].
1. |edges(makeleft(t))| = |edges(t)| + 1
2. |nodes(makeleft(t))| = |nodes(t)| + 1.
3. QED Algebra, using 2.2, 2.3.1, 2.3.2
4. QED Implication, UG
3. (Inductive step) Vt € T(P(t) = P(makeright(t)) Similar to the previous case.
4. (Inductive step) Vt,t' € T(P(t) A P(t') = P(makeboth(t,t"))
1. Fix ¢.
2. Assume P(t) A P(t'), that is, |edges(t)| + 1 = |nodes(t)| and |edges(t')| + 1 = |nodes(t')|.
3. P(makeboth(t,t")), that is, |edges(makeboth(t,t'))| + 1 = |nodes(makeboth(t))|.
1. |edges(makeboth(t,t'))| = |edges(t)| + |edges(t')| + 2
2. |nodes(makeboth(t,t"))| = |nodes(t)| + |nodes(t')| + 1.

3. QED Algebra, using 4.2, 4.3.1, and 4.3.2
4. QED Implication, UG
5. QED Structural induction on binary trees

Theorem 3.6 In a string of 0s and 1s, the number of occurrences of the pattern 01 is less than or
equal to the number of occurrences of 10, plus one.

Let’s try to prove this by structural induction. First we must define P(s). Let’s write num(pat, s)
as the number of occurrences of the pattern string pat in s. Now our inductive hypothesis is

P(s) : num(01,s) < num(10,s) + 1.

If you try to prove this by structural induction, you will get stuck. Why? Consider what happens
when you add 1 at the end. This could increase the number of 01s without increasing the number
of 10s.

So, to prove by structural induction on strings, let’s strengthen the hypothesis by adding another
clause. If a string ends in 0 then the number of 01s is less than or equal to the number of 10s. That
solves the problem by weakening what we have to show when the string ends in 1. But maybe it
causes another problem somewhere else. Let’s give it a try:

Redefine P(s):

num(01,s) < num(10,s) + 1,

and

If s ends in 0 then num(01,s) < num(10, s).

This means that, for each inductive step, we have two things to show:

Lecture 4: Proof by Induction (cont’d) & Structural Induction 11

Prove: Vs € S(P(s))

1. (Base) P()\) No patterns of either kind.
2. (Inductive step) Vs € S(P(s) = P(s0))
1. Fix s.
2. Assume P(s).
3. P(s0)
1. num(01,s0) < num(10,s0) + 1. 777
2. If s0 ends in 0 then num(01, s0) < num(10, s0).
777
3. QED Conjunction
4. QED Implication, UG
3. (Inductive step) Vs € S(P(s) = P(sl))
1. Fix s.
2. Assume P(s).
3. P(s1)
1. num(01,s1) < num(10,s1) + 1. 777
2. If s1 ends in 0 then num(01, s1) < num(10,s1).
777
3. QED Conjunction
4. QED Implication, UG
4. QED Structural induction on strings.

First let’s consider s1. This is the case that looks dangerous, because it might increase the number
of 01s. We have to prove two statements. The second is easy, because the new string doesn’t end
in 0. We say it’s “vacuously true”.

The first statement now takes some work. We might be adding to the number of 01s. However, if
we do, the previous string must have ended with 0. Then the inductive hypothesis says that the
previous string had to satisfy the stronger inequality in the second statement. Adding one to the
LHS of the stronger inequality yields the weaker inequality we want.

The following proof fragment considers cases based on whether s ends in 0 or not. If not, it might
end in 1, or might be empty (don’t forget this possibility).

3. P(s1)
1. num(01,s1) < num(10,s1) + 1.
1. If s ends in 0 then num(01, s1) < num(10,s1) + 1.
1. Assume s ends in 0.
2. num(01,s) < num(10, s) Inductive hypothesis (3.2), part 2.
3. num(01,s1) = num(01,s) +1 Adding one more 01.
4. num(10, s1) = num(10, s)
5. num(01,s1) < num(10,s1) + 1. Algebra (combining 3.3.1.1.2, ...3, and ...4)
QED Implication
2. If s ends in 1 then num(01, s1) < num(10,s1) + 1.
Inductive hypothesis, part 1; no new 0ls.
3. If s = X then num(01, s1) < num(10,s1) + 1.
sl is just 1, which has no 01s.
4. QED Cases
2. If s1 ends in 0 then num(01,s1) < num(10,s1).

12 Lecture 4: Proof by Induction (cont’d) & Structural Induction

Vacuously true, because s1 doesn’t end in 0.
3. QED Conjunction

Of course, you could also expand the step for s ending in 1 into a careful series of inequalities.

Now consider s0. We hope that what we did to make the sl case work doesn’t mess up the
s0 case. But We have to check.

The first statement is easy. It follows from the first statement of the inductive hypothesis for s,
because we are not increasing the number of 01s.

But now the second statement takes more work. The difficulty is that the new string ends in 0,
which means that we have to show the stronger inequality in the second statement. But to do this,
we might only have the weaker inequality for the previous string. The argument again depends on
what the previous string s ended with. So again, we consider cases, based on whether s ends in 0
or 1, or is empty.

If s ends in 0 we rely on the second statement of the inductive hypothesis for s (with the stronger
inequality), whereas if s ends in 1 we rely on the first statement (with the weaker inequality). In
this case, we have to “turn the weaker inequality into the stronger inequality”.

3. P(s0)
1. num(01,s0) < num(10,s0) + 1. Inductive hypothesis, part 1; no new 01s.
2. If s0 ends in 0 then num(01, s0) < num(10, s0).
1. num(01, s0) < num(10, s0).
1. If s ends in 0 then num(01, s0) < num(10, s0).
Inductive hypothesis, part 2; no new 01s
2. If s ends in 1 then num(01, s0) < num(10, s0).
1. Assume s ends in 1.

2. num(01,s) < num(10,s) + 1. Inductive hypothesis, part 1

3. num(01, s0) = num(01, s)

4. num(10,s0) = num(10,s) +1 Exactly one new occurrence of 10.
5. num(01, s0) < num(10, s0) Algebra

6. QED Implication

3. If s = X then num(01, s0) < num(10, s0).
s0 is just 1, which has no 01s or 10s.

4. QED Cases
2. QED Propositional reasoning (truth table)
3. QED Conjunction

If you actually write out all these cases in the proof, you will notice that some facts are stated
repeatedly, e.g., that when you add a 0 to the end of a string you are not increasing the number of
01s.

To avoid having to state these facts several times, you can move them earlier in the proof.

Note that these proofs aren’t very different from ordinary inductive (or strong inductive) proofs.
In fact, you can prove all the same theorems by strong induction on the number of “formation
steps”—that is, the number of times you have to apply the recursive construction rules to get
the object you are proving about. The base cases correspond to 0 applications of combination
operations.

Lecture 4: Proof by Induction (cont’d) & Structural Induction 13

3.3 Recursively-defined functions on recursively-defined data types

Recursive definitions provide a natural way to define functions whose domains are recursively-
defined data types.

Example 3.7 (Boolean Expressions) Define eval, a function from Boolean expressions to {0,1},

by:

eval(0) =0

eval(l) =1

eval((e Ae')) =1 if eval(e) = eval(e') = 1, 0 otherwise.
eval((e VvV €')) = 0 if eval(e) = eval(e’) = 0, 1 otherwise.
eval((—e)) = 0 if eval(e) = 1, 1 otherwise.

Example 3.8 (Binary Trees) Define the function numnodes(t) (a formal definition of what we
understand intuitively to be the number of nodes in the tree t), by:

numnodes(single node) =

numnodes(makeleft(t)) = mnodes(t) +1
numnodes(makeright(t)) = numnodes(t) + 1
numnodes(makeboth(t,t")) = numnodes(t) + numnodes(t') + 1

Define numedges(t):

numedges(single node) =

numedges(makeleft(t)) = medges()+
numedges(makeright(t)) = numedges(t)
numedges(makeboth(t)) = numedges(t) + numedges(t’) +2

We can use structural induction to prove properties of functions defined in this way. For example,
we can reprove the relationship between numbers of nodes and edges in terms of the formal func-
tions numnodes and numedges. (The argument is pretty much the same as before, just using the
formal function definitions instead of relying on our understanding of the sizes of sets.)

Define P(t): numnodes(t) = numedges(t) + 1.

Prove: Vt € T(P(t))
1. (Base) P(tp), where tg is the single-node tree. By definition, numnodes(ty) = 1
and numedges(ty) =0
2. (Inductive step) Vt € T'(P(t) = P(makeleft(t))
1. Fix ¢.
2. Assume P(t), that is, numedges(t) + 1 = numnodes(t).
3. P(makeleft(t)), that is, numedges(makeleft(t)) + 1 = numnodes(makeleft(t)).
1. numedges(makeleft(t)) = numedges(t) + 1
Definition of numedges
2. numnodes(makeleft(t)) = numnodes(t) + 1
Definition of numnodes

14 Lecture 4: Proof by Induction (cont’d) & Structural Induction

3. QED Algebra
4. QED
3. (Inductive step) YVt € T'(P(t) = P(makeright(t)) Similar to the previous case.
4. (Inductive step) Vt,t' € T(P(t) A P(t') = P(makeboth(t,t))
1. Fix t.
2. Assume P(t) A P(t'), that is,
numedges(t) + 1 = numnodes(t) and numedges(t') + 1 = numnodes(t').
3. P(makeboth(t,t')), that is, numedges(makeboth(t,t')) + 1 = numnodes(makeboth(t)).
1. numedges(makeboth(t,t')) = numedges(t) + numedges(t’) + 2
Definition of numedges
2. numnodes(makeboth(t,t')) = numnodes(t) + numnodes(t') + 1
Definition of numnodes
3. QED Algebra
4. QED

5. QED Structural induction on binary trees

