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Proof by Induction (cont’d)

Last time I introduced the basic structure of a proof by induction, and did one basic example.
This week will be spent mostly on inductive proofs. We’ll start with more examples of regular
induction. Then we’ll go on to two fancier forms of induction, called strong induction and structural
induction.

1 More Simple Inductions

1.1 Divisibility

Definition 1.1 Given two integers x and y, we say x divides y, and write x | y, if there is no
remainder on division of y by x. That is, y = cx for some integer c.

Lemma 1.2 ∀n ∈ N,n ≥ 0(6|n3 − n)

We will prove this by induction on n, with base case 0. Thus, P (n) is the predicate 6|n3− n. Base
P (0) looks obvious, because 6|0 by definition. How about the inductive step?

Prove: ∀n ∈ N,n ≥ 0(6|n3 − n)
1. (Base) 6|03 − 0
2. (Inductive step) ∀n ≥ 0(6|n3 − n⇒ 6|(n+ 1)3 − (n+ 1))

1. Fix n ≥ 0.
2. Assume 6|n3 − n
3. 6|(n+ 1)3 − (n+ 1) ???
4. QED Implication,

UG (condensing two steps here)
3. QED Induction

Now, how to get from 2.2 to 2.3? Since both the expressions have high-order n3 terms, we can try
subtracting. The difference is ((n + 1)3 − (n + 1)) − (n3 − n), which works out to 3n2 + 3n. If
we know that 6 divides this difference, and we are assuming that 6 divides n3 − n, it follows that
6|(n+ 1)3 − (n+ 1), which is the sum. That’s what we needed.

So the problem reduces to showing 6|3n2 + 3n. This factors into 3(n2 + n). But we know that
n2 + n is even, that is, 2|n2 + n. If we multiply the expression by 3, then 6 certainly divides the
result.

This discussion contained all the ideas needed for the proof. Now we will put it all together in a
complete proof.

Proof.
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Prove: ∀n ∈ N,n ≥ 0(6|n3 − n)
1. (Base) 6|03 − 0
2. (Inductive step) ∀n ≥ 0(6|n3 − n⇒ 6|(n+ 1)3 − (n+ 1))

1. Fix n ≥ 0.
2. Assume 6|n3 − n
3. 6|(n+ 1)3 − (n+ 1)

1. (n+ 1)3 − (n+ 1) = n3 − n+ 3(n2 + n) Algebra
2. n2 + n is even Proved this last lecture
3. 2|n2 + n Definition of |
4. 6|3(n2 + n) Multiplying both sides by 3

(basic properties of N)
5. 6|(n3 − n) + 3(n2 + n) Divides both terms (2.2, 2.3.4),

so divides sum.
6. QED 2.3.1 equality, 2.3.5

4. QED
3. QED

The ideas in this proof are given directly, in the order in which they are used . This makes it concise
and clear. But this is a different order from the way the ideas arose when we came up with the
proof in the first place. By switching the order around, we’ve lost information about how we came
up with the proof ideas.

In reading proofs, you will see a tension between trying to provide the reader with the cleanest
possible final product and providing intuition about how the proof was developed. Neither extreme
is perfect—both kinds of information are useful. When you write proofs, you might want to give
both the final product and some discussion of how you arrived at it.

1.2 A string example

Lemma 1.3 There are exactly 2n different length n strings of 0s and 1s.

Proof. Let P (n) be the given statement.

Prove: ∀n ≥ 0(P (n))
1. (Base) P (0) There’s exactly one empty string

of 0s and 1s.
2. (Inductive step) ∀n ≥ 0(P (n)⇒ P (n+ 1))

1. Fix n ≥ 0.
2. Assume P (n), that is, there are 2n length n strings.
3. P (n+ 1), that is, there are 2n+1 length n+ 1 strings.

Every string of length n can have either
a 0 or a 1 attached at the end.

4. QED Implication, UG
3. QED Induction
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1.3 Fibonacci numbers

The Fibonacci number are interesting numbers that arise, e.g., in biology, where they model some
types of growth processes (plants, cells, rabbit populations,...). The Fibonacci numbers are written
as Fi, i = 0, 1, 2, . . . . They are defined recursively by:

F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for i ≥ 2.

So the sequence starts out 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .

The Fibonacci numbers satisfy many cute identities. They provide fun for mathematicians. For
example:

Theorem 1.4 ∀n ≥ 0(Σn
i=0F

2
i = FnFn+1)

Example: n = 4:
02 + 12 + 12 + 22 + 32 = 15 = 3 · 5.
Let’s try a proof by induction. The theorem statement suggests trying it with P (n) defined as:

n∑
i=0

F 2
i = FnFn+1

Prove: ∀n ≥ 0(Σn
i=0F

2
i = FnFn+1)

1. (Base) Σ0
i=0F

2
i = F0F1

2. (Inductive step) ∀n ≥ 0(Σn
i=0F

2
i = FnFn+1 ⇒ Σn+1

i=0 F
2
i = Fn+1Fn+2)
???

3. QED Induction

Now we stare at the gap between P (n) and P (n + 1). P (n + 1) is given by a summation that’s
obtained from that for P (n) by adding one term; this suggests that, once again, we subtract. The
difference is just the term F 2

n+1. Now, we are assuming that the original P (n) summation totals
FnFn+1 and want to show that the new P (n + 1) summation totals Fn+1Fn+2. So we would like
the difference to be

Fn+1Fn+2 − FnFn+1

So, the actual difference is F 2
n+1 and the difference we want is Fn+1Fn+2 − FnFn+1. Are these the

same? We want to check that:

F 2
n+1 = Fn+1Fn+2 − FnFn+1

But this is true, because it is really the Fibonacci definition in disguise: to see this, divide by Fn+1.
Here’s the complete proof:
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B

Figure 1: A legal tiling of a 4x4 courtyard. The B marks Bill.

Prove: ∀n ≥ 0(Σn
i=0F

2
i = FnFn+1)

1. (Base) Σ0
i=0F

2
i = F0F1

Both sides are 0.
2. (Inductive step) ∀n ≥ 0(Σn

i=0F
2
i = FnFn+1 ⇒ Σn+1

i=0 F
2
i = Fn+1Fn+2)

1. Fix n ≥ 0.
2. Assume Σn

i=0F
2
i = FnFn+1

3. Σn+1
i=0 F

2
i = Fn+1Fn+2

1. Σn+1
i=0 F

2
i = Σn

i=0F
2
i + F 2

n+1 Summation has one extra term
2. Σn

i=0F
2
i + F 2

n+1 = FnFn+1 + F 2
n+1 Inductive hypothesis (2.2)

3. FnFn+1 + F 2
n+1 = Fn+1(Fn + Fn+1) Algebra

4. Fn+1(Fn + Fn+1) = Fn+1Fn+2 Fibonacci definition
5. QED Combining the equations

4. QED Implication, UG
3. QED Induction

2 Tiling

Our next proof illustrates some new ideas:

• Sometime you need to strengthen inductive hypothesis in order to prove it.

• Sometime induction helps finding a construction, not just do a proof

The new CS building currently under construction will cost about $140 million. Money has come
from many donors, including Bill Gates. Donors get something in return, e.g., something named
after them. What Bill G. wants is one of the buildings named after him, plus a statue of himself
in the middle of the courtyard.

The planned courtyard consists of 2n × 2n squares, for some n ≥ 1. (We don’t yet know how big
n is). The architect, Frank Gehry, wants to cover most of this with L-shaped tiles, each covering
three squares. But one of the four center squares will be left empty, for the statue. Can this be
done? If so, how (we want a general solution, for all values of n).

Example: n = 2

Can we prove what we want by induction? For P (n), let’s try:
For any 2n×2n courtyard, and any particular central square, ∃ a tiling of the courtyard with exactly
that square left untiled.
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Proof. (doomed attempt) In the base case: n = 1, we can use just one tile. In the inductive step,
we try to produce a tiling of a 2n+1×2n+1 courtyard with one center square blank. We can assume
tilings of any 2n × 2n courtyard with any center square blank. We might think of subdividing into
four 2n × 2n sub-courtyards. But it doesn’t seem to help to be able to tile those with centers left
open...

Here we’ve hit the first case where just trying to prove the statement directly by induction doesn’t
work. The solution may be surprising: Try to prove a stronger theorem that implies the one we
want.

Isn’t that harder?

Actually, strengthening a statement to be proved by induction often makes the proof easier . The
reason is that, although we have to prove a stronger P (n+ 1), we also can rely on a stronger P (n).

Here, let’s redefine P (n) to be the predicate that says, for every square in a 2n × 2n courtyard,
we can tile the rest. Stronger. But now P (n) ⇒ P (n + 1) is easier. And the theorem we wanted
originally is just a special case.

Proof. Induction. The base, P (1), is as before. For the inductive step, n ≥ 1, start with an
arbitrary 2n+1 × 2n+1 courtyard with an arbitrary square to leave blank. Let’s try to tile this,
assuming tilings of any 2n × 2n courtyard with any square blank.

Again, divide the 2n+1×2n+1 courtyard into four 2n×2n quadrants. One will contain the square
that must be left blank; it can be tiled by inductive hypothesis.

Next, put one tile in the center, covering one square in each of the other 3 quadrants. Now use
the inductive hypothesis three more times to tile the rest of the 3 quads.

You should make sure you understand the logical structure of this proof.

This proof provides a tiling method, not just existence proof. And it gives a stronger result than
we needed.

3 Geometry

Definition 3.1 A convex polygon is a polygon such that any straight line between any two vertices
doesn’t leave the polygon

P (n): The sum of the interior angles in any n-sided convex polygon is exactly (n− 2)180 degrees.
Prove: ∀n ≥ 3 (The sum of the interior angles in any n-sided convex polygon is exactly
(n− 2)180 degrees.)
1. (Base) Sum of angles in any triangle is 180. Basic fact from geometry
2. (Inductive step) ∀n ≥ 3(P (n)⇒ P (n+ 1))

1. Fix n ≥ 3.
2. Assume sum of angles of any n-sided convex poly is (n− 2)180.
3. Sum of angles of any n+ 1-sided convex poly is (n− 1)180.

1. Fix any n+ 1-vertex convex poly X, say with vertices x1, x2, . . . , xn+1

2. Let Y be the poly with vertices x1, x2, . . . , xn (cutting out one vertex).
3. Y is a convex poly with at least 3 vertices.
4. Sum of interior angles of Y is (n− 2)180.
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Inductive hypothesis (2.2)
5. Sum of interior angles of triangle T = xn, xn+1, x1 is 180.

Basic fact from geometry
6. Sum of angles in X = sum in Y + sum in T , = (n− 2)180 + 180 = (n− 1)180.

Basic geometry, arithmetic.
7. QED UG

4. QED Implication, UG
3. QED Induction

(UG is used to conclude something about all polynomials from what we showed for any particular
one.)

4 Double Induction

Here’s a trickier use of induction, used twice, in a nested way, in the same proof.

Define a function of two N variables recursively as follows:
f(0, k) = 1 for all k ≥ 0.
f(n, 0) = 1 for all n ≥ 0.

For n, k ≥ 0 :
f(n+ 1, k + 1) = f(n, k + 1) + f(n+ 1, k).

Why does this define a function? We can see by looking at a table. The first two rules fill in
the first row and column, respectively. For each other entry, you obtain the value by adding bot-
tom and left neighbors. It is left to the reader to see that this defines a unique function, that is,
fills in all the spaces, in exactly one way.

4 1 5 15 35 70
3 1 4 10 20 35
2 1 3 6 10 15
1 1 2 3 4 5
0 1 1 1 1 1

0 1 2 3 4

We will see these numbers later in the term. For now, notice a formula (which we pull out of thin
air):

f(n, k) =
(n+ k)!
n!k!

.

Here we are using the factorial function (written “!”):

0! = 1
1! = 1
n! = n(n− 1) . . . 1
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Example:
f(3, 4) = 7!

3!4! = 7.6.5.4.3.2.1
3.2.1.4.3.2.1 = 35.

Lemma 4.1 ∀n, k ∈ N(f(n, k) = (n+k)!
n!k! ).

We can prove this by induction. But there are two variables, n and k. So, we will do the proof in
2 levels. The main strategy is by induction on n. And for each particular n, we work by induction
on k. We are doing induction inside an induction.

Let’s break up the statement to make the two levels clearer:

Lemma 4.2 ∀n(∀k(f(n, k) = (n+k)!
n!k! ))

Define Q(n, k) to be the predicate f(n, k) = (n+k)!
n!k! . Q(n, k) says that the value in position (n, k) is

correct (satisfies the formula). Define P (n) to be ∀k(Q(n, k)), that is, ∀k(f(n, k) = (n+k)!
n!k! ). P (n)

means that all the values in row n are correct.

We use the induction pattern:

Prove: ∀n ≥ 0(P (n))
1. (Base) P (0)
2. (Inductive step) ∀n ≥ 0(P (n)⇒ P (n+ 1))
3. QED Induction

Expanding this pattern:

Prove: ∀n ≥ 0(P (n))
1. (Base) P (0)

1. ∀k(f(0, k) = (0+k)!
0!k! ) Both sides are 1

2. QED Definition of P (0)
2. (Inductive step) ∀n ≥ 0(P (n)⇒ P (n+ 1))

1. Fix n ≥ 0.
2. Assume P (n), that is, row n is correct.
3. P (n+ 1), that is, row n+ 1 is correct. ???
4. QED Implication, UG

3. QED Induction

Now, how to prove 3? It involves saying something about the whole row n+1. We use induction to
handle all the elements in this row one at a time. Our goal 3 can be rewritten, using the definition
of P in terms of Q. Note that this is all talking just about row n+ 1.

3. P (n+ 1)
1. ∀k(Q(n+ 1, k))

1. (Base) Q(n+ 1, 0)
2. (Inductive step) ∀k ≥ 0(Q(n+ 1, k)⇒ Q(n+ 1, k + 1)).
3. QED Induction

2. QED Definition of P (n+ 1)
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The base case for the inner induction follows by expanding the definition of Q(n+ 1, 0):

1. (Base) Q(n+ 1, 0)
1. f(n+ 1, 0) = (n+1+0)!

n+1!0! Both sides are 1
2. QED Definition of Q(n+ 1)

The inductive step involves some algebra:

2. (Inductive step) ∀k ≥ 0(Q(n+ 1, k)⇒ Q(n+ 1, k + 1)).
1. Fix k ≥ 0.
2. Assume Q(n+ 1, k).
3. Q(n+ 1, k + 1)

1. f(n+ 1, k + 1) = f(n, k + 1) + f(n+ 1, k)
Definition of f(n+ 1, k + 1)

2. f(n+ 1, k) = (n+1+k)!
(n+1)!k! Inductive hypothesis 2.3.1.2.2,

def. of Q(n+ 1, k).
3. f(n, k + 1) = (n+k+1)!

n!(k+1)! Inductive hypothesis 2.2,
def. of P (n, k + 1).

4. f(n+ 1, k + 1) = (n+k+1)!
n!(k+1)! + (n+1+k)!

(n+1)!k! = (n+1+k+1)!
(n+1)!k+1!

Combining equations, algebra
5. QED Definition of Q(n+ 1, k + 1)

4. QED Induction

The inner inductive hypothesis is invoked to get info about the previous element in the same row,
n+1. The outer inductive hypothesis is then invoked to get info about element k+1 of the previous
row. (The proof uses UI.)

5 Strong induction

Now we explore a more-powerful-seeming variant on the ordinary induction principle. Recall ordi-
nary induction:

Prove: ∀n ≥ 0(P (n))
1. (Base) P (0)
2. (Inductive step) ∀n ≥ 0(P (n)⇒ P (n+ 1))
3. QED Induction

Strong induction gives alternative way to prove the same kind of statements:

Prove: ∀n ≥ 0(P (n))
1. (Base) P (0)
2. (Inductive step) ∀n ≥ 0[(∀i, 0 ≤ i ≤ n(P (n)))⇒ P (n+ 1)]
3. QED Strong induction
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The implication within the inductive step is easier to show than it is for ordinary induction, because
now in order to prove P (n + 1), we can assume all of the hypotheses P (0), P (1), P (2), . . . , P (n),
not just P (n). This is written like a new deduction rule. We can also write it as an axiom:

[P (0) ∧ ∀n ≥ 0[(∀i, 0 ≤ i ≤ n(P (n)))⇒ P (n+ 1)]]⇒ ∀n(P (n)).

Why does this method work? Well, we want to prove for 0, 1, 2, . . . . We get P (0) for free. Then
we know P (0) ⇒ P (1), which tells us P (1) (modus ponens). Then we know P (0) ∧ P (1) ⇒ P (2),
which, since we know P (0) ∧ P (1), tells us P (2). Etc.

Of course, we can do the same thing starting from any k, not just 0:

Prove: ∀n ≥ k(P (n))
1. (Base) P (k)
2. (Inductive step) ∀n ≥ k[(∀i, k ≤ i ≤ n(P (n)))⇒ P (n+ 1)]
3. QED Strong induction

Let’s do some strong induction proofs.

5.1 Blocks and towers

Given an unlimited number of blocks of heights 3 and 7, what height towers can be built?

Try some possible heights:
1: no
2: no
3: yes, 3
4: no
5: no
6: 3+3
7: 7
8: no
9: 3+3+3
10: 3 + 7
11: no
12: 3+3+3+3
13: 7+3+3
14: 7+7
15: 3+3+3+3+3
16: 7+3+3+3

From this point on, can we make all larger height towers?
Define P (n) to be “we can build a tower of height n”. We prove this by strong induction:

Prove: ∀n ≥ 12(P (n))
1. (Base) P (12) Use 3+3+3+3
2. (Inductive step) ∀n ≥ 12[(∀i, 12 ≤ i ≤ n(P (n)))⇒ P (n+ 1)]
3. QED Strong induction
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Here’s the idea for the inductive step. We can build a tower of height n−2, by inductive hypothesis,
then add one 3-block. That is, use P (n− 2) to show P (n+ 1). But there’s a catch: this works only
if n− 2 ≥ 12, i.e., n ≥ 14. (We can only assume P for arguments ≥ 12.)

For n = 12, 13, need to make special arguments.

So, we really have an argument by cases, within the inductive step:

2. (Inductive step) ∀n ≥ 12[(∀i, 12 ≤ i ≤ n(P (n)))⇒ P (n+ 1)]
1. Fix n ≥ 12.
2. (∀i, 12 ≤ i ≤ n(P (n)))⇒ P (n+ 1)

1. Assume ∀i, 12 ≤ i ≤ n(P (n)
2. P (n+ 1))

1. n = 12⇒ P (n+ 1) Use 7+3+3
2. n = 13⇒ P (n+ 1) Use 7+7
3. n ≥ 14⇒ P (n+ 1) ???
4. QED Cases

3. QED Implication
3. QED UG

The first two special cases are easy—we’ve already done them. The last case is the one covered by
the idea sketched earlier.

3. n ≥ 14⇒ P (n+ 1)
1. Assume n ≥ 14.
2. P (n− 2) By inductive hypothesis 2.2.1 and the fact

that n− 2 ≥ 12
3. P (n+ 1) Add one block to the tower from the

previous step.
4. QED Implication

Look at the logical structure. I wrote this as a single base case (for 12) and inductive step, where
the inductive step breaks down into two special cases (for 13 and 14) plus the rest. I could also
formulate a variant on the proof rule:

Prove: ∀n ≥ 12(P (n))
1. (Base) P (12)
2. (Base) P (13)
3. (Base) P (14)
4. (Inductive step) ∀n ≥ 14[(∀i, 12 ≤ i ≤ n(P (n)))⇒ P (n+ 1)]
3. QED Very specialized strong induction

In examples like these, you must be careful to consider all the needed base (or special) cases.
Otherwise, you might “prove” false theorems, e.g., that we can build all towers of size ≥ 3:

Prove: ∀n ≥ 3(P (n))
1. (Base) P (3)
2. (Inductive step) ∀n ≥ 3[(∀i, 3 ≤ i ≤ n(P (n)))⇒ P (n+ 1)]
3. QED Strong induction

If we try to mimic the previous proof for this situation, we find we can’t make the jump to 4 or 5.
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5.2 Nim

The game of Nim is defined as follows: Some positive number of sticks are placed on the ground.
Two players take turns removing one, two, or three sticks. The player to remove the last stick loses.

Theorem 5.1 The first player loses if the number of sticks, n, is 4k + 1 for some k, and wins (if
he plays optimally) otherwise.

We can formalize this by defining a strategy as a rule for how many sticks to remove when there
are n left. We then show that if n = 4k + 1, then player 2 has a strategy that will force a win for
him, otherwise, player 1 has a strategy that will force a win for him.

Proof. By strong induction. Suppose the theorem is true for numbers less than n, show that it
is true for n. So we want to show that if n = 4k + 1 then first player loses, otherwise if n = 4k,
4k + 2, or 4k + 3, then the first player wins. (We’ll see later why this exhausts all possible cases
for n)

Base case: n = 1. The first player has no choice but to remove 1 stick and lose.

For the inductive step, there are four cases:

• n = 4k + 1: show that the first player loses.

We’ve already handled the base case (n = 1) so we can assume n ≥ 5. Consider what the
first player might do to win: he can choose to remove 1, 2 or 3 sticks. If he removes one stick,
the remaining number of sticks is n − 1 = 4k. By strong induction, the player who plays at
this point should win. So the player who played first will lose.

Similarly, if the first player removes two sticks, the remaining amount is 4(k − 1) + 3. He,
again, loses by the same reasoning.

And again by removing 3 sticks, he loses.

So however the first player moves, he loses.

• n = 4k: show that the first player can win.

Have first player remove 3 sticks: the second player then sees 4(k − 1) + 1 sticks, and loses,
by the strong inductive hypothesis.

• n = 4k + 2: show that the first player can win.

Similar to the previous case when the first player removes one stick.

• n = 4k + 3: show that the first player can win.

Again similar to the previous case when the first player removes two sticks.
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5.3 Fibonacci examples

5.3.1 Another false theorem

Here is another false “theorem”. The fallacy is like the blocks example—we don’t have enough base
cases.

False Theorem 1 All Fibonacci numbers are even.

We try strong induction, where P (n) is defined to be “Fn is even.”

Prove: ∀n ≥ 0(P (n))
1. (Base) P (0)

F0 = 0, which is even.
2. (Inductive step) ∀n ≥ 0[(∀i, 0 ≤ i ≤ n(P (n)))⇒ P (n+ 1)]

???
3. QED Strong induction

The inductive step is supposed to prove that Fn+1 is even, using the fact that all smaller Fibonacci
numbers are even. The idea to express Fn+1 as usual, as Fn−1 +Fn. Then use the strong inductive
hypothesis to say that Fn−1 and Fn are both even. The sum is therefore also even.
Error?
We Proved: P (0)
P (0) ∧ P (1)⇒ P (2)
P (1) ∧ P (2)⇒ P (3)
etc. But we never proved P (1).

5.3.2 A lower bound

Here’s a correct proof about Fibonacci numbers. It’s a lower bound on their values.

Lemma 5.2 ∀n ≥ 2(Fn ≥ (3
2)n−2)

Proof. Use strong induction. Let P (n) = Fn ≥ (3
2)n−2

Prove: ∀n ≥ 2(P (n))
1. (Base) P (2) F2 = 1 = (3

2)0

2. (Base) P (3) F3 = 2 ≥ (3
2)1

3. (Inductive step) ∀n ≥ 3[(∀i, 2 ≤ i ≤ n(P (i)))⇒ P (n+ 1)]
1. Fix n ≥ 3
2. Assume ∀i, 2 ≤ i ≤ n(P (i))
3. P (n+ 1) ???
4. QED Implication, UG

4. QED Strong induction

Now in proving the ??? we are only worrying about n ≥ 3 and we may assume the inequality for
all i from 2 up to n, inclusive. Because of the way Fibonacci numbers are defined, it turns out
that the ones we need are just n and n − 1. Those are in the range for which we can assume the
property.
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3. P (n+ 1)
1. Fn ≥ (3

2)n−2 Inductive hypothesis 3.2
2. Fn−1 ≥ (3

2)n−3 Inductive hypothesis 3.2
3. Fn+1 = Fn + Fn−1 Definition
4. Fn+1 ≥ (3

2)n−2 + (3
2)n−3 Plug the inequalities into the equation

5. QED Algebra
1. 3

2 + 1 ≥ (3
2)2 Arithmetic

2. (3
2)n−2 + (3

2)n−3 ≥ (3
2)n−1 Algebra

3. Fn+1 ≥ (3
2)n−1 Algebra (3.3.4 and 3.3.5.2)

4. QED Definition of P (n+ 1)

5.4 Prime Factorization

Recall that a prime is a number not evenly divisible by any number but itself and one. 2, 3, 5, 7, 11, . . .
are primes. 4, 6, 8, 9, 10, 12, . . . are not. They are composites.

Notice, however, that each composite can be broken down (factored) into primes. E.g., 12 = 2×2×3.
This is not a coincidence.

Theorem 5.3 Every natural number ≥ 2 can be written as the product of one or more primes.

Proof. We use strong induction, starting from 2, where P (n) is the predicate “n can be written
as the product of one or more primes”.

Prove: ∀n ≥ 2(P (n))
1. P (2) Use 2 itself
2. ∀n ≥ 2[(∀i, 2 ≤ i ≤ n)(P (i))⇒ P (n)]

1. Fix n ≥ 2
2. Assume ∀i, 2 ≤ i ≤ n(P (i)), that is, all numbers up to

and including n can be factored into primes
3. P (n+ 1), that is, n+ 1 can be factored into primes.

???
4. QED Implication, UG

3. QED Strong induction

The argument about factoring n + 1 breaks down into cases, depending on whether or not n + 1
itself is prime:

3. P (n+ 1), that is, n+ 1 can be factored into primes.
1. If n+ 1 is prime, then n+ 1 can be factored into primes.

Use n+ 1 itself
2. If n+ 1 is not prime, then n+ 1 can be factored into primes.

1. Assume n+ 1 is not prime.
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2. n+ 1 can be written as a× b, where 1 < a, b < n+ 1
Definition of “prime”

3. a can be factored into primes. Strong inductive hypothesis (2.2)
4. b can be factored into primes. Strong inductive hypothesis (2.2)
5. n+ 1 can be factored into primes. Use all the factors from a and b.
6. QED Implication

3. QED Cases

We can do the above a little more carefully. If a is written as a product 2a23a35a5 · · · and b is
written as a product 2b23b35b5 · · · then n+ 1 = ab is written as 2a2+b23a3+b35a5+b5 · · · . We just add
the number of occurrences of each separate prime factor.

Example 5.4 A factorization of 144 can be obtained by noticing that 144 = 8× 18 (among other
possibilities). 8 can be written as 23, and 18 as 2× 32. So, write 144 as 23+132, or 2432.


