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Lecture Notes

In this lecture we will cover methods for evaluating sums.
Sums arise very frequently in the analysis of algorithms and systems.
The main examples in this lecture, however, are drawn from finance and physics.

We’ve already introduced summation notation.
It is often a convenient way to write down an equation, but not so convenient when you actually
want to evaluate it.
We are going to develop some tools for simplifying such sums.
One attack is to find a closed form for the sum: as with an integral, there may be a simple way to
express the sum as another, sum-free function.
Even when we cannot find such a closed form, we may be able to approximate the value well enough
for our purposes.

1 Annuities

Would you prefer a million dollars today or $50,000 a year for the rest of your life? This is a
question about the value of an annuity.
An annuity is a financial instrument that pays out a fixed amount of money at the beginning of
every year for some specified number of years.
In particular, an n-year, m-payment annuity pays m dollars at the start of each year for n years.
In some cases, n is finite, but not always.
Examples include lottery payouts, student loans, and home mortgages.
There are even Wall Street people who specialize in trading annuities.

A key question is what an annuity is worth.
For example, lotteries often pay out jackpots over many years.
Intuitively, $50, 000 a year for 20 years ought to be worth less than a million dollars right now.
If you had all the cash right away, you could invest it and begin collecting interest.
But what if the choice were between $50, 000 a year for 20 years and a half million dollars today?
Now it is not clear which option is better.

In order to answer such questions, we need to know what a dollar paid out in the future is worth
today.
We will to assume that money can be invested at a fixed annual interest rate p.
These days a good estimate for p is around 8%; we’ll use this value for the rest of the lecture.

Here is why the interest rate p matters.
Ten dollars invested today at interest rate p will become (1+p) = $10.80 in a year, (1+p)2 ≈ $11.66
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in two years, and so forth.
Looked at another way, ten dollars paid out a year from now are only really worth 1/(1+p) ≈ $9.26
today.
The reason is that if we had the $9.26 today, we could invest it and would have $10.00 in a year
anyway.
Therefore, p determines the value of money paid out in the future.

1.1 The Value of an Annuity

Our goal is to determine the value of an n-year, m-payment annuity.
The first payment of m dollars is truly worth m dollars.
But the second payment a year later is worth only m/(1 + p) dollars.
Similarly, the third payment is worth m/(1+p)2, and the n-th payment is worth only m/(1+p)n−1.
The total value V of the annuity is equal to the sum of the payment values.
This gives:

V =
n∑
i=1

m

(1 + p)i−1

To compute the real value of the annuity, we need to evaluate this sum.
One way is to plug in m, n, and p, compute each term explicitly, and then add them up.
However, this sum has a special closed form that makes the job easier.
(The phrase “closed form” refers to a mathematical expression without any summation or product
notation.
) First, lets make the summation prettier with some substitutions.

V =
n∑
i=1

m

(1 + p)i−1

=
n−1∑
j=0

m

(1 + p)j
(substitute j = i− 1)

= m

n−1∑
j=0

xj (substitute x =
1

1 + p
)

The goal of these substitutions is to put the summation into a special form so that we can bash it
with a theorem given in the next section.

1.2 The Sum of a Geometric Series

Theorem 1.1 For all n ≥ 1 and all x 6= 0,

n−1∑
i=0

xi =
1− xn

1− x
.
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The terms of the summation in this theorem form a geometric series.
The distinguishing feature of a geometric series is that each term is a constant times the one before;
in this case, the constant is x.
The theorem gives a closed form for the sum of a geometric series that starts with 1.

Proof. The proof is by induction on n.
Let P (n) be the predicate that for all x 6= 1,

∑n−1
i=0 x

i = 1−xn
1−x .

In the base case, P (1) holds because
∑0

i=0 x
i = x0 = 1 and 1−x1

1−x = 1.

In the inductive step, for n ≥ 1 assume that for all x 6= 1,
∑n−1

i=0 x
i = 1−xn

1−x .
We will use this to prove that for all x 6= 1,

∑n
i=0 x

i = 1−xn+1

1−x .

n∑
i=0

xi = xn +
n−1∑
i=0

xi

= xn +
1− xn

1− x

=
xn(1− x) + 1− xn

1− x

=
1− xn+1

1− x

The second line follows from the first by the induction hypothesis.
The remaining steps are only simplifications.

As if often the case, the proof by induction gives no hint about how the formula was found in the
first place.
Here is a more insightful derivation.
The trick is to let S be the value of the sum:

S = 1 + x+ x2 + . . .+ xn−1

−xS = −x− x2 − x3 − . . .− xn

Adding these two equations gives:

(1− x)S = 1− xn

S =
1− xn

1− x

We’ll say more about finding (as opposed to proving) summation formulas later in the next lecture.
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1.3 Return of the Annuity Problem

Now we can solve the annuity pricing problem.
The value of an annuity that pays m dollars at the start of each year for n years is computed as
follows:

V = m

n−1∑
j=0

xj

= m
1− xn

1− x

= m
1− ( 1

1+p)n

1− 1
1+p

= m
1 + p− ( 1

1+p)n−1

p

The first line is a restatement of the summation we obtained earlier for the value of an annuity.
The second line follows by applying the theorem for the summation of a geometric series.
In the third line, we undo the earlier substitution x = 1/(1 + p).
In the final step, both the numerator and denominator are multiplied by 1 + p to simplify the
expression.

The resulting formula is much easier to use than a summation with dozens of terms.
For example, what is the real value of a winning lottery ticket that pays $50, 000 per year for 20
years? Plugging in m = $50, 000, n = 20, and p = 0.8 gives V ≈ $530, 180.
Because payments are deferred, the million dollar lottery is really only worth about a half million
dollars! This is a good trick for the lottery advertisers!

1.4 Infinite Geometric Series

The question at the beginning of this section was whether you would prefer a million dollars today
or $50, 000 a year for the rest of your life.
Of course, this depends on how long you live, so optimistically assume that the second option is to
receive $50, 000 a year forever.
This sounds like infinite money!

We can compute the value of an annuity with an infinite number of payments by taking the limit
of our geometric sum in Theorem 1.1 as n tends to infinity.
This one is worth remembering!

Theorem 1.2 If |x| < 1, then

∞∑
i=0

xi =
1

1− x
.



Lecture 10: Lecture Notes 5

Proof.

∞∑
i=0

xi = lim
n→∞

n−1∑
i=0

xi

= lim
n→∞

1− xn

1− x

=
1

1− x

The first equality follows from the definition of an infinite summation.
In the second line, we apply the formula for the sum of an n-term geometric series given in Theo-
rem 1.1.
The final line follows by evaluating the limit; the xn term vanishes since we assumed that |x| < 1.

In our annuity problem, x = 1/(1 + p) < 1, so the theorem applies.
Substituting for x, we get an annuity value of

V = m · 1
1− x

= m · 1
1− 1/(1 + p)

= m · 1 + p

(1 + p)− 1

= m · 1 + p

p

Plugging in m = $50, 000 and p = 0.8 gives only $675, 000.
Amazingly, a million dollars today is worth much more than $50, 000 paid every year forever! Then
again, if we had a million dollars today in the bank earning 8% interest, we could take out and
spend $80, 000 a year forever.
So the answer makes some sense.

1.5 Examples

We now have formulas enabling us to sum both finite and infinite geometric series.
Some examples are given below.
In each case, the solution follows immediately from either Theorem 1.1 (for finite series) or Theo-
rem 1.2 (for infinite series).
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1 + 1/2 + 1/4 + 1/8 + . . . =
∞∑
i=0

(1/2)i

=
1

1− (1/2)
= 2

0.999999999 . . . = 0.9
∞∑
i=0

(1/10)i

= 0.9
1

1− 1/10

= 0.9
10
9

= 1

1− 1/2 + 1/4− 1/8 + . . . =
∞∑
i=0

(−1/2)i

=
1

1− (−1/2)
= 2/3

1 + 2 + 4 + 8 + . . .+ 2n−1 =
n−1∑
i=0

2i

=
1− 2n

1− 2
= 2n − 1

1 + 3 + 9 + 27 + . . .+ 3n−1 =
n−1∑
i=0

3i

=
1− 3n

1− 3

=
3n − 1

2

If the terms in a geometric series grow smaller as in the first example, then the series is said to be
geometrically decreasing.
If the terms in a geometric series grow progressively larger as in the last two examples, then the
series is said to be geometrically increasing.

Here is a good rule of thumb: the sum of a geometric series is approximately equal to the term with
greatest absolute value.
In the first two examples, the largest term is equal to 1 and the sums are 2 and 2/3, both relatively
close to 1.
In the third example, the sum is about twice the largest term.
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In the final example, the largest term is 3n−1 and the sum is (3n − 1)/2, which is only about a
factor of 1.5 greater.

1.6 Related Sums

We now know all about sums of geometric series.
But in practice one often encounters sums that cannot be transformed by simple variable substi-
tutions to the form

∑
xi.

A non-obvious, but useful way to obtain new summation formulas from old is by differentiating or
integrating with respect to x.
As an example, consider the following series.

n∑
i=1

ixi = x+ 2x2 + 3x3 + . . .+ nxn

This is not a geometric series, since the ratio between successive terms is not constant.
Our formula for the sum of a geometric series cannot be directly applied.
But suppose that we differentiate that formula:

d

dx

n∑
i=0

xi =
d

dx

1− xn+1

1− x
n∑
i=0

ixi−1 =
−(n+ 1)xn(1− x)− (−1)(1− xn+1)

(1− x)2

=
−(n+ 1)xn + (n+ 1)xn+1 + 1− xn+1

(1− x)2

=
1− (n+ 1)xn + nxn+1

(1− x)2

Often differentiating or integrating messes up the exponent of x in every term.
In this case, we now have a formula for a series of the form

∑
ixi−1, but we want a formula for the

series
∑
ixi.

The solution is simple: multiply by x.
This gives:

n∑
i=0

ixi =
x− (n+ 1)xn+1 + nxn+2

(1− x)2

Since we could easily have made a mistake, it is a good idea to go back and validate a formula
obtained this way with a proof by induction.



Lecture 10: Lecture Notes 8

Notice that if |x| < 1, then this sum converges to a finite value even if there are infinitely many
terms.
Taking the limit as n tends infinity gives the following theorem:

Theorem 1.3 If |x| < 1, then

∞∑
i=0

ixi =
x

(1− x)2
.

As a consequence, suppose there is an annuity that pays im dollars at the end of each year i forever.
For example, if m = $50, 000, then the payouts are $50, 000 and then $100, 000 and then $150, 000
and so on.
It is hard to believe that the value of this annuity is finite! But we can use the preceding theorem
to compute the value:

V =
n∑
i=1

m

(1 + p)i

= m

1
1+p

(1− 1
1+p)2

= m
1 + p

p2

The second line follows by an application of Theorem 1.3.
The third line is obtained by multiplying the numerator and denominator by (1 + p)2.

For example, if m = $50, 000, and p = 0.08 as usual, then the value of the annuity is V =
$8, 437, 500.
Even though payments increase every year, the increase is only additive with time; by contrast,
dollars paid out in the future decrease in value exponentially with time.
The geometric decrease swamps out the additive increase.
Payments in the distant future are almost worthless, so the value of the annuity is finite.

The important thing to remember is the trick of taking the derivative (or integral) of a summation
formula.
Of course, this technique requires one to compute nasty derivatives correctly, but this is at least
theoretically possible!

2 Book Stacking

Suppose n books are stacked on the edge of a table as shown in Figure 1.
How far can the top book overhang the table edge without the whole stack falling over? One book
length? Two? We will prove that if there are enough books, then the top book can overhang
arbitrarily far!
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Figure 1: If n books are stacked on a table, how far can the top book overhang the edge without
the whole stack falling over?

2.1 Formalizing the Problem

First, we have to reduce the real-world problem to a mathematical question.
Define the length of a book to be 2 and assume that all books have the same mass.
For 0 ≤ i ≤ n − 1, define di to be the distance that the top book’s (book 0’s) right edge extends
beyond book i’s right edge.
Treat the table as book n; that is, dn is the distance book 0 extends beyond the table.
Note that while intuitively the di should be decreasing (each book extends farther than the one
below it) there may be exceptions as shown by book 3 in the figure.

Figure 2: For 1 ≤ i ≤ n, the variable di is the distance that book 0 extends beyond the right end
of book i. The table is regarded as book n+ 1, so xn is the distance that book 1 extends beyond the
end of the table. The di need not decrease monotonically, as shown by d3.

The position of the books is constrained by the condition that the stack must not fall over.
A stack of books is stable iff for 1 ≤ k ≤ n, the center of mass for the top k books lies above the
(k + 1)-st book.
We will not prove this, but will accept it as an principle of physics (i.e., an axiom).
This stability constraint is illustrated for n = 1 in Figure 3.

Let’s apply a greedy strategy to our book stacking problem.
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Figure 3: This figure illustrates the idea of a stable stack of books for the special case of a single
book. In the left diagram, the stack is stable because the center of mass lies above the next “book”
(in this case, the table). In the right diagram, the book is unstable because the center of mass
overhangs.

Put the top book so that its center of mass is at the edge of the second book, and then place the
second book so that the center of mass of the top two is at the edge of the third book, and so on.
In general, we place the kth book such that the center of mass of the top k books is at the edge of
the (k + 1)st book.
That is, we want dk to be equal to the center of mass of the top k books.
Let’s write the equation for this.

As we do these equations, we are working “relative to the right side of the top book”—our coordi-
nate frame measures distance to the left of this point.

Notice that the center of mass of the book number i is at distance di+1 to the left of the top book.
So the center of mass of the top k books (numbered 0, . . . , k − 1) is at the average of these k
positions, namely

(dk−1 + 1) + (dk−2 + 1) + · · ·+ (d0 + 1)
k

and we want this to be just above the right hand side of book number k, which is at offset dk.
This gives us an equation relating the quantities:

dk =
(dk−1 + 1) + (dk−2 + 1) + · · ·+ (d0 + 1)

k

which rewrites as

kdk = dk−1 + dk−2 + · · ·+ d0 + k

Of course, by the same reasoning,

(k − 1)dk−1 = dk−2 + dk−3 + · · ·+ d0 + k − 1

and if we subtract this equation from the one before, we get

kdk − (k − 1)dk−1 = dk−1 + 1
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or in other words,

dk = dk−1 + 1/k

Now if we “expand” the relation above, we find out that

dk = dk−1 + 1/k
= dk−2 + 1/(k − 1) + 1/k

· · ·
= 1 + 1/2 + · · ·+ 1/(k − 1) + 1/k

Figure 4: This is a stacking of 4 books that overhangs the table by the greatest possible distance.
In general, the k-th book from the top should extend distance 1

k beyond the book below.

Can we do better? Well, for stability, looking at the derived center of mass above, we must have

dk ≤
(dk−1 + 1) + (dk−2 + 1) + · · ·+ (d0 + 1)

k

and in our greedy strategy above, the inequality is always “tight” (met with equality): that is, dk
is as large as possible, given d0, . . . , dk−1.
It follows by induction that each dk is as large as possible.
So we cannot do better.

2.2 Evaluating the Sum– The Integral Method

The best possible total extension is now expressed as a sum that, coincidentally, appears frequently
in computer science.
(Fancy that!) In fact, it is important enough to have a name.

Definition The n-th Harmonic number is equal to
∑n

i=1
1
i and is denoted Hn.

We can rewrite the formula for greatest possible extension simply as Hn/2.
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The first few Harmonic numbers are easy to compute.
For example, H1 = 1, H2 = 1 + 1

2 = 3
2 , H3 = 1 + 1

2 + 1
3 = 11

16 , H4 = 1 + 1
2 + 1

3 + 1
4 = 25

12 .
The fact that H4 is greater than 2 has special significance; it implies that the total extension of a
4-book stack is greater than one full book! This is the situation shown in Figure 4.

It would be nice to answer questions like, “How many books are needed to build a stack extending
100 book lengths beyond the table?” One approach to this question would be to keep computing
Harmonic numbers until we found one exceeding 200.
However, as we will see, this is not such a keen idea.
In fact, for all we know, building a stack extending so far may be impossible regardless of the
number of books.

All such questions would be settled if we could express Hn in a closed form.
Unfortunately, no closed form is known and probably none exists.
As a second best, however, we can find closed forms for very good approximations to Hn using the
Integral Method.
The idea of the Integral Method is to bound terms of the sum above and below by simple functions
as suggested in Figure 5.
The integrals of these functions then bound the value of the sum above and below.

Figure 5: This figure illustrates the Integral Method for bounding a sum. The area under the
“stairstep” curve over the interval [0, n] is equal to Hn =

∑n
i=1 1/i. The function 1/x is everywhere

greater than or equal to the stairstep and so the integral of 1/x over this interval is an upper bound
on the sum. Similarly, 1/(x+1) is everywhere less than or equal to the stairstep and so the integral
of 1/(x+ 1) is a lower bound on the sum.

The Integral Method gives the following upper and lower bounds on the harmonic number Hn:

Hn ≤ 1 +
∫ n

1

1
x
dx = 1 + lnn

Hn ≥
∫ n

0

1
x+ 1

dx =
∫ n+1

1

1
x
dx = ln(n+ 1)

These bounds imply that the harmonic number Hn is around lnn.
Since lnn grows without bound, albeit slowly, we can make a stack of books that extends arbitrarily
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far.

For example, to build a stack extending 100 book lengths beyond the table, we need a number of
books n so that Hn = 200.
Exponentiating the above inequalities gives:

eHn−1 ≤ n ≤ eHn − 1
e199 ≤ n ≤ e200 − 1

The number of books required has 86 digits!

2.3 More about Harmonic Numbers

In the preceding section, we showed that Hn is about lnn.
A even better approximation is known:

Hn = lnn+ γ +
1

2n
+

1
12n2

+
ε(n)

120n4

Here γ is a value 0.577215664 . . . called Euler’s constant, and ε(n) is between 0 and 1 for all n.
We will not prove this formula.

The shorthand Hn ∼ lnn is used to indicate that the leading term of Hn is lnn.
More generally, the notation f(n) ∼ g(n) means that limn→∞

f(n)
g(n) → 1.

We also might write Hn ∼ lnn+ γ to indicate two leading terms.
While this notation is widely used, it is not really right.
Referring to the definition of∼, we see that whileHn ∼ lnn+γ is a true statement, so isHn ∼ lnn+c
where c is any constant.
The correct way to indicate that γ is the second-largest term is Hn − lnn ∼ γ.

The reason that the ∼ notation is useful is that often we do not care about lower order terms.
For example, if n = 100, then we can compute H(n) to great precision using only the two leading
terms:

|Hn − lnn− γ| ≤ | 1
200
− 1

120000
+

1
120 · 1004

| < 1
200


